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Kurzfassung

Organe, wie die Blase, die Prostata oder das Rektum, zeichnen sich vor allem durch
ihre weiche und flexible Struktur aus. Diese ist auch der Grund dafür, dass sie ihre
äußere Form laufend verändern, dies geschieht vor allem in Abhängigkeit ihres aktuellen
Füllstandes. Klinische Studien deuten darauf hin, dass diese Schwankungen den Erfolg
von Strahlungstherapien für Patienten mit Prostatakrebs beeinflussen könnten. In der
Praxis werden die täglichen Formveränderungen der zu behandelten Organe zwar durch
simple Neuausrichtung der bestrahlten Region berücksichtigt, dennoch könnte eine detail-
lierte Analyse der exakten Schwankungen eine höhere Genauigkeit der Therapieplanung
ermöglichen. Um die Therapieeffekte zu evaluieren, werden sogenannte Kohortenstudien
durchgeführt, in welchen eben jene Form- und Positionsschwankungen und ihre jeweiligen
Effekte analysiert werden.

Im Laufe dieser Arbeit präsentieren wir eine webbasierte Anwendung, welche in der Lage
ist, einen medizinischen Datensatz der Beckenorgane von 24 Patienten mit Prostatakrebs
über einen Verlauf von 13 Behandlungseinheiten zu analysieren. Wir verfolgten hierbei
zwei Ziele: Einerseits versuchen wir, medizinische Experten bei der Durchführung von
Kohortenstudien zu unterstützen und andererseits wollen wir Ärzten eine individuelle
Strahlungstherapieplanung auf Patientenbasis ermöglichen. Unsere Anwendung ist in
der Lage, große Datensätze von Organen zu verarbeiten, indem wir sie zuerst in einen
niedrig-dimensionalen Raum transformieren, in welchem die Formschwankungen analysiert
werden können. Dadurch können wir den Anwendern einen Überblick über den gesamten
Datensatz zur Verfügung stellen. In einem nächsten Schritt können Teile des Datensatzes
ausgewählt und detaillierter analysiert werden. So kann man zum Beispiel die exakten
Formveränderungen der Organe von einzelnen Patienten oder Gruppen von Patienten zu
untersuchen. Wir präsentieren die Anwendbarkeit unserer Methode anhand zahlreicher
Szenarien und evaluieren ihren Erfolg durch Interviews mit zwei Fachexperten. Die
Anwendung, die in dieser Arbeit präsentiert wird, kann als erster Schritt gesehen werden,
Ärzte bei der Planung von Strahlungstherapieeinheiten zu unterstützen, welche auch die
täglichen Formschwankungen von Organen berücksichtigen.
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Abstract

Pelvic organs such as the bladder, rectum or prostate have highly variable shapes that
change over time, due to their soft and flexible tissue and varying filling. Recent clinical
work suggests that these variations might affect the effectiveness of radiation therapy
treatment in patients with prostate cancer. Although in clinical practice small correction
steps are performed to re-align the treated region if the organs are shifted, a more in-depth
understanding and modeling might prove beneficial for the adaptation of the employed
treatment planning strategy. To evaluate the viability and to account for the variability
in the population of certain treatment strategies, cohort studies are performed analyzing
the shape and position variability of pelvic organs.

In this thesis, we propose a web-based tool that is able to analyze a cohort of pelvic
organs from 24 patients across 13 treatment instances. Hereby we have two goals: On
the one hand, we want to support medical researchers analyzing large groups of patients
for their shape variability and the possible correlations to side effects. On the other hand,
we want to provide support for medical experts performing individual patient treatment
planning. Our tool offers both the option to analyze a large cohort of different organ
shapes, by first modeling them in a shape space and then analyzing the shape variations
on a per-patient basis. While this first part aims at providing users with an overview
of the data, we also give them the option to perform a detailed shape analysis, where
we highlight the statistically aggregated shape of a patient or a specified group using a
contour variability plot. Finally, we demonstrate several possible usage scenarios for our
tool and perform an informal evaluation with two medical experts. Our tool is the first
significant step in supporting medical experts in demonstrating the need for adaptation
in radiation therapy treatments to account for shape variability.
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CHAPTER 1
Introduction

What is out of the common is usually
a guide rather than a hindrance.

Sherlock Holmes, A Study in Scarlet
Sir Arthur Conan Doyle

This chapter aims at giving a short overview of the most important concepts presented in
this thesis. We focus in particular on the motivation, which drove us as well as our goal.
The chapter also includes a short guide explaining the structure of the following thesis.

1.1 Motivation
Prostate cancer is one of the leading cancer types in men, accounting for one out of
four of all new cases of cancer in Austrian men [AUS19a]. Radiation therapy using
an external beam is an often employed approach in combating it [WL15]. It aims at
destroying cancer cells in a non-invasive way through high radiation doses, and therefore
destroying the tumor inside the body. This method requires an extensive amount of
planning to calculate precisely where the tumor is placed and how to treat it effectively.
During the course of the radiation treatment not only the tumor is damaged but also the
surrounding healthy tissue, leading to several side effects commonly known as toxicity.
While modern treatment techniques like Intensity Modulated Radiation Therapy (IMRT)
and Volumetric Arc Therapy (VMAT) allow for more precise treatments, there are also
other factors leading to negative side effects [WL15].

Several recent works suggest that the shape changes and variations of patients can lead to
increased radiation doses being delivered to healthy organs like the bladder or the rectum
[CMMH+17]. Although a simple correction in terms of alignment is made before each
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1. Introduction

treatment to align the treated area with the tumor, this seems often not to be sufficient.
Adapting the current workflow to encompass even more complex changes in organ shape
could allow for an even better treatment precision with less damage to other organs
[THLM+13]. To achieve this, medical experts, which we define in the context of this
work as physicists working on robust treatment plans, require a better understanding of
both the general shape and position variability of certain organs as well as the variability
of individual patients. To evaluate the overall robustness of the used treatment plans,
individual patient exploration might not be sufficient, therefore a general analysis of the
cohort is also necessary.

Currently, the exploration of shape variations is only done in clinical research and is
not integrated into clinical practice due to the induced cost and time requirements. By
providing a simple tool to estimate and visualize the shape variability of pelvic organs,
we want to support clinical researchers in their task to demonstrate the significance of
adaptation of the dose plan. To this end, Visual Analytics can be used in the treatment
pipeline to enhance the precision of treatment plans.

We can condense the main research question of this work as: Which strategies can we
employ to analyze and visualize the anatomical changes of organs to support medical
experts in their research and treatment planning?

1.2 Aim of the Work

The aim of this work is to implement a tool to be used by medical experts to analyze a
set of segmented pelvic organs of multiple patients across the whole radiation therapy
treatment procedure. For this purpose we analyzed what recent works in this field tried
to achieve and transformed their approaches into seven different research questions, which
a medical expert might want to answer:

(Q1) Which patients or organs experience high amounts of variability inside the cohort?

(Q2) What are common types of shapes and variations inside the cohort?

(Q3) Which parts of the cohort are missing?

(Q4) How do organs vary in shape and position between patients or across treatment
instances?

(Q5) Do certain parts of an organ experience especially high variations?

(Q6) Are there overlaps between different organs inside the cohort?

(Q7) How do certain organs differ in shape between patients?

2



1.2. Aim of the Work

1.2.1 Tasks

To enable researches to find answers to the previously defined questions we defined two
basic tasks that our final tool aims at answering.

(T1) Exploration and analysis of the shape variability and types across the cohort
(Q1-Q3)

(T2) Exploration and analysis of local shape and position variations for individual
patients and organs (Q4-Q7)

(T1) Exploration and Analysis of the Shape Variability and Types Across
the Cohort

With the provided organ shape data stretching across patients and timesteps, the resulting
cohort can provide deeper insights than the analysis of only single patients. The main
information researchers are interested in extracting from the provided data is the amount
of change certain organs are subject to both between all patients but also over time for
single patients. While the definition of statistic variability is precisely defined for sets of
numbers, it is not as readily extensible to segmented organ shapes [MWK14]. Therefore,
we need to find a way to calculate a simple representation (descriptor) for each organ
in the cohort that allows us to measure the similarity between organs. With such a
combination of descriptor and metric, we would be able to find groups of similar organs
and estimate their variability.

After the measures are calculated, we need to visualize them for the whole cohort.
Datasets including patients and timesteps have a quadratic growth in size as more
patients are added. Therefore exploration and analysis must be possible in such a way
that users are both able to quickly gain an overview, as well as identifying patients or
organs with high variability.

For analyzing groups of similar patients and organs, appropriate quality measures need
to be provided to inform users how common the group is and how large the inner group
variations and missing data percentage is.

(T2) Exploration and Analysis of Local Shape and Position Variations for
Individual Patients and Organs

After interesting partitions of the cohort (i.e. patients or subgroups) have been identified,
users might want to perform a more detailed exploration of the individual patients and
organs. While the previous step focused on showing the average variability for each organ
for easy exploration, the detailed exploration should be able to show the variability of a
group of organs in 3D. This should allow users to understand which regions of certain
organs are prone to variations and how large these differences are. The user should be
able to differentiate between changes in position and shape.

3



1. Introduction

Segmentations of certain organs are often manual and can include margins to account
for motion and other inaccuracies. Therefore, two adjacent segmentations might overlap.
Being able to see how large these overlaps are and how they are influenced by organ
shape variations can provide valuable insights into the causes of induced toxicity.

While the analysis of the variability of a partition might provide knowledge about
individual variations and behaviors, it should also be possible for an expert to compare
multiple partitions to each other, providing knowledge about how the same part may
have different variations.

1.2.2 Requirements

The result of this work should not only be able to fulfill the previously defined tasks but
it also has to achieve some requirements ensuring its usability as an application. The
extent to which these requirements are achieved is discussed in Chapter 6.

Scalability

The underlying approach should be able to process large numbers of patients, timesteps,
and organs efficiently. Users should be able to easily add the data of new patients to the
full cohort. The resulting visualization has to be able to provide interactive responses to
the user’s actions to facilitate exploration.

Generalizability

While the main focus of the tool is to provide medical experts with information about
pelvic organs, the basic algorithm used for the variability calculation should be indepen-
dent of the underlying use case. This should ensure an easy extendability of the tool to
other parts of the body or even other completely different use cases.

Usability

The final tool should be provided in a form that users can employ it without the need
for an extensive setup process. Additionally, the tool and the information it provides
needs to be understandable as well as usable by medical experts, who might have varying
degrees of experience with interactive visualizations and Visual Analytics.

1.3 Methodological Approach

The initial basis for all further tasks in this thesis is the development of an approach to
quantify the similarity of volumetric shapes and estimate the variability. While using
contours to visualize shapes and their differences works for a small number of compared
items it does not scale well and therefore appropriate abstraction methods need to
be found to allow for the comparison of large shape collections. To achieve this an
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1.3. Methodological Approach
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Figure 1.1: Overview of our general approach.

aggregation approach previously only used for weather data [FKRW16] is employed to
the organs in the cohort.

For the first task, the resulting low-dimensional embedding of each organ is then used
to calculate the variability on a per-patient basis and visualized over the whole cohort.
Using the provided 2D representation of each organ, similar organs can be grouped using
clustering. The provided information is visualized for each data point in a trellis shaped
visualization. To comply with Shneidermann’s Mantra "Overview first, zoom and filter,
then details-on-demand." [Shn03] at any given time, the data is grouped with detailed
patient information only being visible if the user wishes.

The next step was to approach the second task by providing the user with the option to
drill down to groups of patients from the cohort and perform a detailed inspection of
the organ variations. This is achieved by reconstructing the initial 3D objects from their
low-dimensional embeddings. By sampling the embedding space for both the median and
the standard deviation, one can reconstruct 3D objects representing the shape variations.
Using these objects a contour boxplot is created for the selection.

The main contribution of this thesis is a visual tool for medical researchers working on
the design of robust treatment planning methods who are trying to understand how organ
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1. Introduction

shapes vary across multiple patients and timesteps. To achieve this we used the pelvic
organ data of 24 different patients with prostate cancer across 13 treatment instances and
visualized it using an aggregation approach for 3D volumes. The final tool not only allows
users to explore a large cohort in a quick and easy way, but also enables an in-depth
exploration of individual patients.

1.4 Outline of the Thesis
The following chapters are structured as follows: In Chapter 2 we explain the medical
background on pelvic organs their inherent variability with an additional focus on cancer.
Of all possible treatment methods for cancer radiation therapy is discussed in detail
in all its involved stages, after which the chapter concludes in an explanation of the
prostate cancer data used as a basis for this thesis. In the following Chapter 3 we focus
on how recent works in medicine try to analyze shape variations in organs, hereby we also
look at current advances in shape analysis. Another important research area we reflect
upon is the field of ensemble and comparative visualization. After the presentation of
the works that influenced this thesis, the next step was to take a look at the problems
at hand and discuss possible solutions for them in Chapter 4. Starting with ways to
analyze shapes, we go on with the visualization of large cohorts of data and conclude with
methods to provide a detailed and comparative analysis of local shape changes. Having
decided which of the proposed methods work best for our case, we proceed in Chapter 5
with an explanation about the concrete implementation that resulted in our proposed
tool. Chapter 6 looks at the resulting tool and investigates possible usage scenarios
and findings derived from the data. During our work, we also performed an informal
evaluation with three medical experts, which is also described in this chapter, together
with a critical analysis of our results. Finally, we conclude our work in Chapter 7 where
we not only reiterate briefly about the performed work, but also offer possible ways of
advancing the topic in future works.

6



CHAPTER 2
Clinical Background

While the general approach of analyzing variability in large volumetric datasets can be
interesting for many different applications, the use case this thesis is focusing on is the
visualization of anatomical changes. The goal of this chapter is therefore to provide some
background information on the medical reasons for organ shape variations as well as
showing reasons why their understanding can be beneficial for medical experts.

2.1 Pelvic Organs
The part of the body, which this work largely focuses on is the male pelvis and the organs
it contains. Understanding the rough anatomical structure of the contained organs is
important to comprehend how different parts of the body interact and where certain
problems might arise due to illnesses or treatments.

As part of the urinary system (which can be seen in Figure 2.1), the bladder is a
muscular organ that collects the urine. When the urine is disposed of, it leaves the
bladder via the urethra, which can be seen as a tube. Wrapping around the urethra and
positioned just below the bladder is the prostate. It is an essential component of the male
reproductive system, responsible for parts of the ejaculate production and its transport
during ejaculation. On top of the bladder, the seminal vesicles are placed, which are
two glands producing another component needed for semen. While the bladder can be
considered in front of the prostate and seminal vesicles, in their back the last part of the
colon is lying. Its primary objective is to act as a storage facility for human feces before
they are finally transposed [HWS+83].

2.2 Prostate Cancer
Prostate cancer generally describes malignant tissue forming in the prostate. Statistically
speaking prostate cancer is the most common type of cancer of men in developed countries,

7



2. Clinical Background

Bladder

Penis

Urethra

Testis

Rectum

Seminal
Vesicle

Prostate

Figure 2.1: Pelvic Organs of the Male Body (Image adapted from Cancer Research UK
[UK19])

Organ Incidence
Pelvic Organs 26%

Prostate 24%
Urinary Tract 2%

Digestive Organs 25%
Colon 8%
Rectum 4%
... 13%

Respiratory Organs 15%
Lung 13%
... 2%

Table 2.1: Cancer incidence rate in Austrian men in 2016. Prostate cancer is the leading
type of cancer [AUS19a].
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2.3. Radiation Therapy

according to recent statistics. As of 2016 around 63.415 cases were reported in Austria,
with 5.245 being new cases out of the total population of 8.6 million people [AUS19a].
The overall incidence rate for prostate cancer lies at around 24% of all new cancer cases in
men leading in front of lung and all kinds of digestive cancers (as seen in Table 2.1). The
risk rises sharply after the age of 50 and reaches its peak at around 70 and 80 [SWD08].
The cumulative chance for a man to suffer from prostate cancer at any time up to the
age of 75 lies at around 8.4%. While the general survival rate of prostate cancer is at
around 90% after 10 years, this still amounted to 1.225 men dying because of it in 2016
[AUS19b].

Because the early stages of prostate cancer do not lead to any symptoms, early screening
measures are used. After a physical rectal examination, the second most important
indicators for prostate-related diseases is the amount of prostate-specific antigen (PSA)
present in the blood [moy]. If both of these methods seem to indicate cancer a biopsy is
performed to take samples of the prostate as final proof. Due to the invasiveness of the
method, this is only performed in cases with clear symptoms [EST09].

2.3 Radiation Therapy

For patients suffering from prostate cancer, the right choice of treatment is essential.
This decision is influenced by the age of the patient and its remaining live time as well as
the previous medical history. Often the choice is made not to perform active treatment
and watch the progression. One example of such a case would be a patient who is not
expected to develop symptoms in his remaining life [WSM+04].

If the choice for active treatment is made, due to the aggressiveness of the tumor or
other circumstances, several different treatment options are available [HAB+08]. The
most common being:

• Surgery - The prostate is removed either in parts or as a whole.

• Radiation Therapy - The tumorous tissue is destroyed through the application
of high radiation doses. The dose can either be applied via an external beam or by
using radioactive beads that are implemented.

• Hormonal Therapy - The production of certain hormones is decreased, which
may slow down the growth of certain tumors (e.g. prostate).

• Chemotherapy - The reproduction rate of fast-growing cells in the body is
decreased, which also aims at slowing down tumor growth, but due to it attacking
all cells healthy ones are also damaged.

• Combined Therapy - Often not only a single therapeutic approach is applied
but multiple ones to achieve better treatment results.
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The treatment method this work focuses on is radiotherapy using an external beam
(EBRT). As mentioned before the main goal of radiotherapy is to damage the tumor
tissue using high radiation doses. The radiation is applied in the form of several beams
around the body intersecting at the tumor, which in turn leads to a high applied dose at
the targeted area and a lower dose at the surrounding tissue [ZYF+08]. Recent techniques
called Intensity Modulated Radiation Therapy (IMRT) and Volumetric Arc Therapy
(VMAT) are improvements to this method that use specifically shaped radiation beams
and a moving beam to further limit the damage to healthy tissue [QLL+12].

2.4 Organ Variability
Generally speaking, the inner anatomy of every human has unique variations. Roughly
they can be divided into three different groups:

• Naturally Occurring Variations (i.e. across individuals)

• Pathological Changes (i.e. due to the impact of disease)

• Day-to-Day Changes (i.e. due to filling changes)

Naturally occurring variations might range from simple size and shape differences to
different deforming behavior, to varying connectivity patterns of blood vessels. These
variations have been thoroughly researched by medical experts and are usually dealt with
using imaging data to comprehend each patient’s inner structure [RBL+09, MMNG15].
Changes induced due to certain diseases like tumor growth are dealt with in a similar
way and are explored by analyzing imaging data for each patient individually [AGL+13].
Apart from these natural and pathological shape differences, most organs also change on
a day-to-day basis, due to some internal circumstances, because all of the aforementioned
organs are generally made of soft deformable tissue and are movable up to a certain degree
inside the body. As both bladder and rectum are hollow inside and act as temporary
storage rooms which are regularly filled and emptied, their general shape largely varies
based on these circumstances (e.g. the bladder’s volume might range from 100 ml up
to 700 ml) [MSD03]. The general amount of flexibility differs from organ to organ and
person to person. Large size variations of one organ affect the surrounding ones as well,
for example, an enlarged bladder might push away the prostate or seminal vesicles from
their usual position or an enlarged prostate (due to some illnesses) might restrict the
flow through the urethrae. While the static shape differences are well researched, the
dynamic ones occurring each day are only well known on a general basis and not for
individual patients.

During the radiation treatment, a patient might experience a wide range of acute side
effects linked as an immediate response to the radiation damage like fatigue, increased
urinary problems, and digestion problems [FVRS09]. These symptoms should fade away
after the treatment procedure is finished. Apart from these short-lived problems, there is
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Figure 2.2: Example of a simulated radiation therapy treatment plan applied to a patient
with a full and an empty bladder. The left part shows the spatial distribution of the
radiation applied to the prostate, while the right part shows the dose-volume-histogram
explaining how much each surrounding organ is radiated. It also shows that by having a
different bladder filling than the one at the time of the treatment planning the empty
bladder receives a higher radiation dose. (Image from Nejad-Davarani et al. [NDSM+19])

also the chance that a patient might develop long-term symptoms, like rectal bleeding,
incontinence, or worse [DKN+99, FVRS09]. The reason for this is that often parts of
healthy organs are irradiated beyond a certain threshold and suffer therefore permanent
damage. This effect is called toxicity and is often associated with the aforementioned
longterm symptoms.

While a proper treatment plan aims to minimize the risk for inducing toxicity, recent
works suggest a link between the movability and deformability of an organ and its risk of
suffering from severe after-effects [CMMH+17]. Organs like the bladder whose position
and shape varies strongly on a daily basis due to its own and the bowel’s filling, are
especially prone to this effect [VYM+10]. The effect of this can be seen in Figure 2.2,
where a treatment, which was initially created for a patient with a full bladder is re-
evaluated for the same patient with an empty bladder. It shows how drastically the
received dose of the bladder increases, due to this shape change [NDSM+19]. Other
works also evaluated these effects on other organs like the rectum and came to similar
conclusions [FVRS09].
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Diagnosis Imaging
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Figure 2.3: Current radiation therapy workflow as described in the work of Schlachter et
al. [SRM+19]. While the current process includes a per treatment adaptation, in terms
of position and alignment, future techniques aim at having an even preciser radiated area
by re-evaluating a larger part of the workflow for each treatment [SSB+05].

2.5 Therapy Workflow
Radiation therapy follows a simple step-by-step workflow, which involves several different
people and starts with the diagnosis of a patient with cancer and ends in a post-treatment
examination of the patient. The overall goal of this workflow is to ensure the most
effective treatment with the least possible side effects. As treatment procedures evolve to
be more precise and effective the treatment workflow is also updated continuously. As
it is important to understand the processes leading to a patient’s treatment and what
actions medical experts perform in the course of this planning process, we will present a
simplified version of the workflow, ranging from the initial diagnosis up to the treatment
of the patient, similar to the ones described in the work of Aselmaa et al. [AGL+13] and
Schlachter et al. [SRM+19].

2.5.1 Diagnosis

The initial diagnosis is often made not by an oncologist but instead by various other
physicians, which the patient visits due to some health complaints, like headaches,
difficulties during urination, or breathing problems. Follow up tests could include
different imaging procedures and blood tests. Ideally, the consulted physician detects
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cancer during the testing procedures and refers the patient to colleague specialized on
cancer [WL15]. During this transition period, it is of great importance that the medical
history and the acquired data is properly shared between the involved parties to ensure
proper treatment.

2.5.2 Imaging

After the initial diagnose is made, the next big step is to acquire detailed information
about the tumor. For this, imaging data is gathered on the diseased region. Techniques
used for this may include Computed Tomography (CT) and Magnetic Resonance Imaging
(MRI) to show the internal structure or functional techniques like Positron Emission
Tomography (PET) showing the flow of certain markers [NDSM+19]. Which modality
should be used, largely depends on the type of tumor and its surrounding tissue, the
reason for this being that each modality has different up- and downsides, but in general
CT images are always used as a basis and then complemented using other modalities.

If a multitude of modalities is used they first need to be linked together, which is done
using a process called image fusion, where multiple images of different or the same
modality a registered to one another [WTK+06]. The goal of this step is to overlay
the different images correctly accounting for factors like different image resolutions and
patient movement. The CT images often serve in this context as the base image to which
the others are aligned [AGL+13].

2.5.3 Target Volume and Organ at Risk Segmentation

The next step is to use the images to segment the tumor and its surrounding organs,
which might suffer during the treatment. In this process medical experts use the given
images to either automatically, semi-automatically or even manually select which parts
of the image belong to either the tumor or are parts of surrounding organs [PLV+07].
The manual process involves the expert going through the image data slice-by-slice and
manually drawing the structures to be segmented [WL15].

Together with the tumor, its surrounding organs are also segmented. They are at risk of
being radiated and could suffer under toxicity. Precise knowledge of the position and
extent of these organs at risk (OAR) is an essential part of the treatment planning, as
many modern tools can use this information to optimize the given dose.

Following this, the tumor is segmented. In this context, it is important to differentiate
between the different types of volumes involved in this process (as seen in Figure 2.4)
[JYW99, WL15]:

• GTV (Gross Tumor Volume) - Visible Tumor Tissue (as seen on a macroscopic
view in the imaging data)

• CTV (Clinical Target Volume) - GTV + Presumed Tumor Tissue (cannot be seen
on the images - microscopic - created by a safety margin around the GTV)

13



2. Clinical Background

GTV

CTV

PTVTV

IV

Figure 2.4: Overview of the volume definitions used in radiation therapy planning.

• PTV (Planning Target Volume) - CTV + Safety Margin (to account for organ
movement and uncertainties)

• TV (Treated Volume) - Treated Volume with a sufficient radiation dose

• IV (Irradiated Volume) - TV + Affected Healthy Tissue

2.5.4 Treatment Planning

After segmentation, a treatment plan is calculated in a simulation program. The goal of
this stage is to provide optimal irradiation of the tumor, while minimizing the damage to
the surrounding tissue, as this may lead to acute or late complications as organs like the
rectum or bladder are damaged. The planned dose is not administered at once, but is
instead split up over several weeks. This allows the regeneration of healthy tissue and
prohibits tumor growth [WL15].

The creation of this plan can either be done in a direct way where the user adjusts the
beams and evaluates how each part of the body is affected or inversely where the user
only defines the area to be treated and the beam positions are calculated.

2.5.5 Treatment Evaluation

Due to the importance of the initial treatment plan, multiple different medical experts
evaluate it before it is employed. To do this, different methods have been developed.
Two examples of these can be seen in Figure 2.2. Using a spatial view, the experts can
directly see how the dose would affect the tumor and its surrounding organs for the given
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point in time, showing precisely which parts of each organ are radiated [NDSM+19]. In
a more abstract way, dose-volume-histograms can show how much radiation is received
by how much of each organ, which allows the user to quickly identify organs in risk of
induced toxicity [WL15].

2.5.6 Treatment Adaptation

The standard treatment procedure is to use the initially generated plan as a basis for
the following treatments. To allow this procedure, it is important that the setting of the
initial planning is reproduced during the treatment, for example, prostate treatments are
commonly performed with a full bladder [WL15]. There are still many different factors
that might lead to shape and position variations throughout the treatment, therefore
small adaptations need to be applied to the target volume. This process has to be done
continuously to account even for small anatomical movements. These mostly simple
translations cannot account for more complex deformations [CMMH+17].

The value of adjusting the target volume in prostate cancer therapy on a per treatment
basis was highlighted by several recent works, which estimated that a change of bladder
filling also leads to an increase in radiation applied to the organ, which in turn leads to
increased organ damage and side effects [VYM+10]. Recent years lead to many different
improvements in radiation therapy, while the machines applying the dose got more and
more precise as time progressed, the planning processes also adapted and moved towards
a more personalized treatment [SSB+05]. Future plans might go towards a 4D treatment
plan where the variability and movement of the patient’s organs are taken into greater
consideration to specify the radiated area, possibly on a per-treatment basis [THLM+13].
To achieve this adequate tools need to be integrated into the planning pipeline that
allows physicians to inspect and analyze the organ variability.

2.6 Used Data
For this work, we were provided with the data of 24 different patients undergoing radiation
therapy for prostate cancer. Around half of the patients, the treated area was restricted to
the prostate and seminal vesicles, while for the other half it also included larger portions
of the pelvis to include the surrounding lymph nodes. The initial treatment plan was
calculated for patients with an empty rectum and full bladder.

Each day of their treatment the patients were instructed to have roughly the same bladder
filling. Before each treatment, a cone beam computed tomography was done to align the
patient’s treatment volume using rigid transformations (only translation).

The provided data includes 13 treatment steps for each patient with the first five of them
being the results of the treatments 1-5 and the other ones from every fifth treatment
(6, 11, 16, ...) [CMMH+17]. While we were not provided with the CT data of each of
these timesteps, we were instead given the segmented organs and treatment volumes in
the form of contour lines. As mentioned before, medical experts manually delineate the
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Timestep 1 Timestep 2 Timestep 13

Patient 1

Patient 2

Patient 24
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Figure 2.5: General structure of the cohort data used in this work. The segmentation
data of 24 patients is used, with each of them having 13 recorded timesteps throughout
their treatment. For each point in the cohort multiple different organs are segmented,
including bladder, rectum and most importantly the radiated volume.

tumor and organs at risk to calculate a treatment plan. As the data was previously used
in a study to determine the effect of bladder changes on the received irradiation, this
segmentation process was also done for all timesteps.

The final data includes the contours of the surrounding organs and the treatment volume
of 24 patients with each of them having at least 13 recorded treatment steps. The
included organs are bladder and rectum for each one of them, as well in some cases the
penile bulb and femur heads. The bladder itself was also split into four different regions
(Anterior vs. Posterior and Apex vs. Base). Apart from these organs, the tumor and
treatment regions were defined by contours for the CTVs and several different types
of PTVs. The 24 patients used in this work were selected from the full cohort of 29
patients as they provided the most consistently labeled organs (as seen and explained
in Table 2.2). Selecting only patients with a correctly segmented bladder, rectum and
either a combined prostate seminal vesicle (SV) segmentation or a CTV leaves us with
24 patients, which were further used in this work.
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(a) Segmented Organs at Risk (red = Rectum,
orange = Bladder) and Prostate (blue)

(b) Segmented Bladder (c) Four Subparts of the Bladder

(d) Prostate CTV and PTV

Figure 2.6: Examples of the contours present in the provided data
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Occurrence Percent
Bladder 29 100%
Rectum 29 100%
Fem Head 29 100%
CTV 13 45%
ProstateSV 11 38%
Prostate & SV 2 7%
PTV 29 100%

Table 2.2: Number of segmented parts present in the data per patient (n = 29). All
patients have a segmented bladder, rectum and femur heads. 26 Patients have either a
CTV or a segmented prostate with seminal vesicles (in two cases the prostate and seminal
vesicles are separately segmented). Although each patient has some sort of PTV. The
type of PTV, defined by the radiation intensity, strongly varies from patient to patient.
Each one of them has a unique therapy.
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CHAPTER 3
Related Work

The topic of this thesis touches upon a wide range of related works. These works either
relate to the presented research questions directly or were used as a basis to develop new
solutions for problems that to the best of our knowledge were not presented in any other
works.

The last years have seen some growing interest in research regarding the variations and
shape differences in pelvic organs, especially in terms of radiation therapy for prostate
cancer. Throughout this chapter, we will analyze in detail how these thematically closely
related works differ from ours and how we intended to improve upon them.

Apart from these specific visualization topics, we will also take a look at a more general
topic that deals with the analysis and representation of volumetric shapes and how to
estimate differences and variations between them. The volumetric dataset stretches
across both patients and timesteps, their large size can lead to scalability problems
and techniques found in cohort and ensemble visualization need to be employed. To
allow exploration of shape differences in their original space, methods for comparative
visualization need to be used, to gain an understanding of how different patients vary
in size and shape. We will discuss how this thesis draws upon these previously done
works. The basic workflow and how it touches upon these different fields can be seen in
Figure 3.1.

3.1 Classic Approaches
To facilitate understanding of the daily occurring shape variations in pelvic organs and
especially how they may have an effect on the side effects of radiation therapy, some
works were already performed by medical experts. An example of a work performed by a
medical professional is the one of Nejad-Davarani et al. [NDSM+19], who analyzed the
impact of volume changes to the irradiation of the bladder by simulating a treatment
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Shape
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Figure 3.1: Overview of the general topics touched upon in this thesis and how they
interact with each other. Starting with an overview visualization of the cohort, interesting
shapes are selected and analyzed. Groups of shapes are then treated as an ensemble and
need to be visualized jointly. Finally one has to be able to compare multiple different
ensembles to each other.

plan for both empty and full bladders of multiple patients. They evaluated the applied
dose by using Dose-Volume Histograms (DVHs), which are a representation that shows
which percentage of the organ tissue is radiated to which extent in percent. An example
of their work can be seen in Figure 2.2, where the applied dose is shown for the PTV,
bladder, and rectum. The plot shows that for the full bladder the PTV receives the
maximal dose nearly across its whole volume, while the bladder only receives such a high
dose for 15% of its volume. This type of visualization is often used during the treatment
process as an evaluation tool. However, it is abstracted from the spatial domain and
cannot provide any information about the current shape of the involved organs, meaning
they only show that a certain dose is administered, but not where. Due to this depiction,
the representation of shape changes can only be visualized by showing how the radiation
dose changes.

Casares et al. [CMMH+17] used another approach to analyze how bladder shape changes
affect the administered dose. Although their work did not aim at implementing an
analysis tool they proposed some techniques to show the variability of certain organs and
their influence on the radiation dose distribution during the treatment. They visualized
the shape changes of organs like the bladder over several treatment steps on a per-patient
basis by drawing the segmented slices superimposed. In combination with the underlying
treatment plan, it can be seen which parts of the bladder intersect with the treatment
volume. An example of this can be seen in Figure 3.2. While this approach works well
for single patients, it is not extensible to larger cohorts of data and multiple patients.

These previous works of medical experts give insight into what kind of visualizations are
common to them, e.g. slice representations for all three axes. Still, they currently do not
have any tool for analyzing more than one patient at a time, without any means to look
through the cohort patients with certain kinds of variations. While the simple approaches
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used to visualize local shape changes are useful when comparing low numbers of patients
they do not scale well for larger groups, for example overlaying more segmentation lines
would only result in an indistinguishable clutter.

3.2 Shape Analysis

To explore the possible shape variations of organs and to quantify their extent, it is
important to use appropriate representation methods and measures, for example, by
embedding shapes in a common space. The chosen approach must allow the analysis
of large shape cohorts, which in our application are volumes of different organs, while
still maintaining interactive frame rates. In this context, the field of shape analysis is
of relevance. Due to the explorative nature of tasks analyzing organ variations, visual
analytics solutions are often used in this field, where a user is not only shown one
visualization for the whole cohort but where he can instead incrementally search through
the data to find parts of interest, e.g. patients with especially large variations.

3.2.1 Descriptor-based Approaches

During the last year, several papers were published specifically focused on analyzing
topics related to the variability of pelvic organs in patients with prostate cancer. A
common trait of them is their use of descriptors calculated based on the shape of the
used organs.

One of these tools is Bladder Runner by Raidou et al. [RCMA+18], which aims at
providing information about the amount of irradiation applied to the bladder across
the treatment for a patient. For finding similarly shaped organs they use a 14D vector
consisting of several characteristics calculated from the organ shape [PI97]. This vector
includes the eigenvalues of the inertia tensor, volume, convexity, and several other
values. The resulting vector’s dimension is reduced by applying a t-Distributed Stochastic
Neighbor Embedding (t-SNE) [MH08], after which a clustering [CM02] for similar shapes
is performed. The information is then represented in a glyph-based view to show the
whole cohort. The variations are visualized by aggregating the organ volumes and drawing
isolines at their coverage percentiles, indicating which regions are covered 100%, 75%,
etc. (as seen in Figure 3.3a) of the time. While this already shows how strong a certain
patient’s shape variations are, it allows them to calculate the amount of irradiation
received by the bladder. Overall the tool offers a lot of different approaches in regards
to our research question, especially as it enables the analysis of the cohort and shape
variability at the same time. The main difference is that the aim of this work is to focus
on the analysis of more than one organ. We also aim at including the possibility of
missing elements in the data, and overlaps between organs. The current approach for
analyzing shape variations is not easily expendable to compare more than one or two
clusters to each other.

Another tool using a similar approach was implemented by Reiter et al. [RBGR18].
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Figure 3.2: Examples of the classic approaches presented (Images from Casares et
al. [CMMH+17]).
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Their goal was to provide domain experts working in the field of segmentation a way to
analyze how certain organ variations affect the segmentation results. They described
the used segmentation data by scale and rotation invariant descriptors called spherical
harmonics [KFR03], iteratively decomposing the shape into a series of coefficients. In
contrast to other works, they employ two different dimensionality reduction techniques to
reduce their 8D vector to a 2D representation (as seen in Figure 3.3b). The whole cohort
containing multiple different organs is transformed using t-SNE [MH08] to differentiate
between the different types of organs. If a single organ is viewed independently, its
shape vectors are transformed using Principal Component Analysis (PCA) [Shl14]. This
allows users to quickly identify outliers created by segmentation errors. A detailed
inspection of certain organs is provided in a 3D space where the mean shape is presented
with a color-coding indicating the likelihood of shapes being bigger or smaller. This
work includes many different organs and places them in a common space. It does not
differentiate between patients and timesteps and therefore forgoes most of the valuable
cohort meta-information. Additionally, they use automatically segmented meshes, while
we use manual segmentation lines, which are not directly convertible. The reason for this
being that their segmentation surfaces have precise triangle-to-triangle correspondences.
Furthermore, they do not offer a way to show common shape types on a per organ basis.

Generally, the use of descriptors as presented in the former works, allows their tool to
efficiently differentiate between different shapes. But it lacks the ability to synthesize
arbitrary elements in their shape space, restricting the analysis to elements present in
the cohort. In regards to representing the shape variability, previous works either used
coverage levels or median shapes based on triangle-to-triangle correspondences. The
former ones do not represent the actual object shape and only allow the analysis of a
single organ, while the latter approach makes an assumption which is not given in our
current application.

3.2.2 Statistical Approaches

The work of Hermann et al. [HK15] provides an overview of different applications in the
field of statistical shape analysis, especially as they deal with medical and biological
data. They define three essential steps that a shape analysis tool needs to perform for an
effective shape exploration:

1. Registration

2. Analysis

3. Synthesis

In the first step, all shapes are registered to a template using translation, rotation, and
scaling, the mean shape is often employed as a basis. After this, a statistical analysis is
performed, which transforms the high-dimensional shapes into a reduced space where the
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(a) Raidou et al. [RCMA+18]

(b) Reiter et al. [RBGR18]

Figure 3.3: Examples of the descriptor-based shape variability approaches presented.
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principal axes describe their main variations. The final step for many applications is to
provide a method of synthesizing shapes from the reduced space to the original one for
inspection. This must work for elements already present in the data and freely picked
ones.

One of the first works in this context was the one by Busking et al. [BBP10]. They used
a 2D scatter plot to represent the distribution of the elements inside the reduced cohort
and allowed the user to not only show concrete elements present in the data but also
to synthesize arbitrary objects in the shape space. They calculated and visualized the
differences between a selected shape and the mean shape by using a color-coded 3D
view. By utilizing a so-called evolution view, where the 3D objects are represented as 2D
silhouettes, they want to visualize certain trends in the data. For this, they use three
different visual representations: side-by-side, overlayed, or stacked 2D renderings. In
another work, they also dealt with the topic of directly comparing intersecting 3D surface
meshes [BBF+11]. An overview of their tool can be seen in Figure 3.4a. Their work was
one of the first to outline how an interactive visual analytics approach can be used in the
exploration of shape variations. While the work can analyze a single object in detail it is
not extendable to multiple ones. Its 2D plot of the shape distributions shows well which
organs are similar but also neglects the notion of patient and timestep. Furthermore, the
information on positional variation is also removed due to the initial registration process.

Following this work, the basic idea was picked up by other researchers and applied to
other use cases. Landesberger et al [VLBK+13] showed its applicability for the analysis of
segmentation models to enhance the users understanding of the connection between the
underlying data, the model parameters, and the segmentation results. Their tool provided
visualizations for the distribution of the cohort elements (as seen in Figure 3.4b), similar
to the one presented in Busking et al. [BBP10], as well as color-coded surface models
indicating the segmentation quality, and aggregated bar charts providing an overview
of the overall segmentation quality in the cohort. Although the use for segmentation
is not directly applicable to our case, their visualization approaches for errors could be
used to encode variability. They currently do not include any notion for variability for
individual patients, and similarly to other works offer no option to analyze the cohort in
a temporally coherent manner.

Hermann et al. [HSK11, HSSK14] use a similar approach for the analysis of morphometric
differences in animals. In their works, they provide tools to inspect how certain semantic
traits affect the structure of elements. To find the differences between two different
classes along with a certain trait they used a side-by-side representation for each class and
color-coded the difference to their shared mean, highlighting differently shaped regions
[HSK11]. In their succeeding work, they analyzed the concept of anatomical covariance,
where a change in one region affects another one. Contrary to previous works they use
tensor glyphs indicating variation directions as an overview visualization. They also
allow the user to select individual regions and manually transform regions to analyze
how other parts of the object transform in detail [HSSK14]. Examples of both works can
be seen in 3.4c and 3.4d. The analysis based on certain semantic features could offer
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great insight into the underlying reasons for problems like bladder toxicity. Their current
approach is largely based on the contrasting differences between two opposing features,
which is not the case in the human-based data set we are using.

The general concept of representing cohort data as high-dimensional vectors and reducing
them using statistical analysis methods like PCA serves as a good basis for the method
presented in this thesis. Our approach differs in a few key instances: Previous methods
only focused on analyzing a single type of organ at the same time, we instead incorporate
multiple different ones. This also means analyzing their intersections. Secondly, in
regards to the used visualization approaches the previous shape space analytics tools
heavily rely on allowing the user to manually explore the whole shape space, while in
our case the analysis tasks mostly focus on understanding the combined variations of
single patients or certain groups across multiple timesteps. Finally, most works describe
a common problem in finding an effective way of comparing more than two elements to
each other, which we also plan to solve using a combination of aggregation and exploded
views.

3.3 Ensemble Visualization

The analysis of shapes allows us to place them in a common space and explore different
possible shapes and their similarity. We are more interested in exploring the variations
already present in our data. This is especially true if we aim at visualizing the shape
variability of a group or a patient. To achieve this we can look at methods from ensemble
visualization. Most solutions in this field do not use medical data, but instead large
collections of spatiotemporal data, for example from weather simulations. Wang et
al. [WHLS18] looked at tools allowing users to understand these large data ensembles,
and defined a simple pipeline, which most approaches follow, as seen in Figure 3.5.
Starting with the ensemble data, a first step could be to perform aggregation and
calculate statistical properties like the mean, median, and standard deviation. After
that, the data and statistical properties are rendered. As a final step, multiple visualized
elements can be composited. Based on the pipeline they defined, one can differentiate
works in this field by looking at which components they employ.

A good example of works that perform an aggregation before visualization are the ones of
Mirzargar et al. [MWK14] and Ferstl et al. [FBW16, FKRW16, FKRW17]. By redefining
the concept of data depth, a measure to estimate how central a data point is inside a
group, to be applicable for functions and streamlines, Whitaker et al. [WMK13] were
able to estimate the necessary statistical elements for a box plot. Their contour box plot
was extended for streamline ensemble data by Mirzargar et al. [MWK14] who were able
to show mean, variability, and outliers in simulated hurricane datasets. While rendering
an arbitrarily large number of streamlines would only result in a messy spaghetti plot,
their aggregated version showed the main trends in a precise and visually clear manner,
as seen in Figure 3.6a. As the calculation of their band depth for each streamline in the
ensemble has quadratic growth, their implementation might not be suitable for interactive
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(a) Busking et al. [BBP10]

(b) Landesberger et al. [VLBK+13]

Figure 3.4: Examples of the statistical shape variability approaches presented.

applications.

Following this work, Ferstl et al. [FBW16] created a similar visualization, but instead of
calculating the band depth, they used a technique similar to the ones discussed in shape
analysis. By sampling streamlines along their path and interpreting the collected points
per streamline as a vector, they transformed all streamlines into a dimensionality reduced
space using PCA. By sampling the confidence ellipsoid and median in the reduced space
and transforming the points back into the original space they were able to calculate a
box plot like representation. Their result can be directly compared to the previous work
of Mirzargar et al. [MWK14] in Figure 3.6b. In a follow-up work Ferstl et al. [FKRW16]
improved upon their previous method by using a signed distance function representation
for the streamlines. This, in turn, allows them to perform the calculation of the variability
lobes faster, by only sampling two points for the standard deviation. At the same time,
this also enables the calculation of correlated streamline parts in the aggregated lobes.
The latter can be used to convey a notion of were streamlines that went through one
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(c) Hermann et al. [HSK11]

(d) Hermann et al. [HSSK14]

Figure 3.4: Examples of the statistical shape variability approaches presented (continued).

Data Aggregation Visualization Composition

Figure 3.5: Ensemble visualization workflow, adapted from Wang et al. [WHLS18]. The
dotted lines show that the respective pipeline parts do not have to be present in all works.

point tended to move afterward. Their workflow and respective results are shown in
Figure 3.6c. In further extensions [FKRW17] they showed how to employ these techniques
to cluster streamlines in large time-varying ensembles, with the goal to highlight how
certain patterns evolve over time. To achieve this they employ different visualization
techniques like stacked streamline variability plots, seen in Figure 3.6d. The basic idea
for their work has currently been only applied for weather simulation data and not to
medical information, where larger variations in shape may occur. Furthermore, while
their estimation of shape variability not only works for 2D lines but also for 3D volumes,
they have not implemented visualizations that are able to encode information about the
3D median and confidence intervals.

In contrast, Pfaffelmoser et al. [PW13] perform the other way around, visualizing the
data, in the form of contour lines over an ensemble first, and then compositing the final
image in a way that reveals the underlying structure. Although the initial spaghetti
plot of superimposed contours works well for a low number of ensemble members, the
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more there are the more complex understanding gets. To solve this problem, they use
two techniques: the general direction of the underlying field of values is encoded using
a black-gray-white color scheme showing which parts are below and which are above
the iso-value. The contours themselves are colored based on the underlying cumulative
distribution and the gradient of the value field. Their processing steps and the final result
can be viewed in Figure 3.6e. In combination, these two visualizations allow them to
differentiate similarly appearing contour ensembles. Their chosen method works well for
their selected use case but it assumes similar shapes which we may not always have. It
also may be more difficult to interpret by medical experts, as the three different colormaps
need a proper explanation.

Looking at the two different categories: aggregation before visualization and composition
after visualization, each may offer different benefits. The latter can ensure distinguisha-
bility for complex representations, while the former generally tries to achieve a simpler
representation by aggregating the base information. Many approaches in this field are
solely working with simulated data in the form of streamlines or isocontours and not
medical segmentation data, which has to be appropriately processed. Due to the size of
the cohort, restricting to only use one of the two categories might restrict the ability of
users to compare two different shape ensembles to each other.

3.4 Comparative Visualization
Many of the aforementioned works struggle with finding effective ways to compare
multiple visual elements to one another, like for example trying to understand how
multiple ensembles of contours or 3D meshes differ. Recently Kim et al. [KCK17] wrote
a comprehensive overview of works in this field, categorizing them into four different
groups, based on how they chose to compare multiple elements. A visual overview of
them is provided in Figure 3.7:

• Juxtaposition (Side-by-Side): The elements are placed next to each other, each
in its own frame of reference.

– Pros: Provides a good overview and has no occlusions
– Cons: Tradeoff between element size and number of elements due to screen

space limitations (e.g. lots of small elements vs only a few larger elements)

• Superimposition (Overlay): The elements are placed on top of each other in a
shared frame of reference.

– Pros: Direct comparison of full-sized elements
– Cons: Visibility problems due to occlusions limit the number of elements

• Interchangeable (Temporal Superimposition): Only a single element is shown at
once on the screen, the view can switch through the elements, either manually or
animated.
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(a) Mirzargar et al. [MWK14] (b) Ferstl et al. [FBW16]

(c) Ferstl et al. [FKRW16]

(d) Ferstl et al. [FKRW17]

Figure 3.6: Examples of the ensemble visualization approaches presented.
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(e) Pfaffelmoser et al. [PW13]

Figure 3.6: Examples of the ensemble visualization approaches presented (continued).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Comparison between the fundamental techniques of comparative visualization,
showcasing their scalability from two elements to n elements [KCK17].

– Pros: Full-sized view of a single element without occlusions
– Cons: Limited by the number of elements a user can remember

• Explicit Encoding: Instead of showing the elements themselves, the differences
between them are calculated and shown.

– Pros: Focused view highlighting even small differences
– Cons: Original information is lost and the difference is not always meaningful

The choice of encoding is largely depended on the application because there is no
universally best way. Looking at different examples of mesh comparison approaches in
other works, we find uses for all options. Keefe et al. [KERC09] for example employs a
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juxtapositioned view of small representations of a pig’s jaw to visualize its movement
while eating. By explicitly encoding the movement the small representations only show
information relevant to the analysis. While only being a part of a more complex visual
tool, which includes a parallel coordinate view to perform an in-depth search in the
cohort, it serves well at providing a good overview of the available data elements and
their respective differences. In Figure 3.8a the basic layout of their tool is presented.
This work is a good example of how a combined encoding type is able to achieve better
results than a single view. During their work, they show a good way of providing users
with an overview of the cohort. For our work, we would also need to include information
about the patients behind the data and the temporal order between the cohort elements.

A more classic approach is applied in the work of Tory et al. [TMA01] where the extracted
brain lesions from MRI images are superimposed. Their development is visualized either
by rendering all of them at once using different colors for each timestep in conjunction
with them being transparent or by creating an animated view showing the change over
time. While this rather simple approach works well for a small number of timesteps, the
analysis gets harder and nearly impossible if more timesteps are added. In their case,
they pushed the method to its limit with 11 superimposed elements. The scaling of their
technique for 2, 4 and 11 elements can be seen in Figure 3.8b. Their animated view
corresponds to the use of an interchangeable representation. The restrictions in terms
of scalability are approached by our tool through aggregation as it could be possible
for users to analyze arbitrarily large sets of segmentation contours. In general, they
investigate the lesions of only one patient at a time, whereas we also want to be able to
compare larger groups of patients in a common space at once.

How explicit encoding can be used to highlight the differences between 3D meshes, can
be seen in the work of Schmidt et al. [SPA+14]. In their work, they focus on how
to compare a large number of similar meshes, created through different point cloud
surface reconstruction algorithms. To quickly identify regions with high errors in the
reconstruction the mesh is rendered textured with a heatmap. As they mention in their
work, this kind of approach does not scale well with multiple meshes. Therefore they
implemented a parallel coordinate plot visualization, where the errors of interesting
regions for different algorithms are drawn on top of each other, which allows for an easier
comparison of a high number of meshes (as seen in Figure 3.8c). Using a highlighted
map of the surface is a good way to convey where certain deformations are located. As
with other works, the use of surfaces is not applicable for our data, and we need to
find another way to estimate differences between shapes. Furthermore, their work only
focuses on a single object and its deformations, which we want to extend to multiple
intersecting organ shapes.

The use of comparative visualization techniques seems to be more and more necessary
as we aim at providing insight into the different shape variations present in the cohort.
The aspect of being able to appropriately scale a visualization in such a way that the
comparison of multiple groups of shape variations is possible, requires the use of a
combination of techniques.
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(a) Keefe et al. [KERC09]

(b) Tory et al. [TMA01]

Figure 3.8: Examples of the comparative visualization approaches presented.

3.5 Cohort Analysis
The underlying tasks we approach with our tool can be roughly split into two groups we
aim to support:

• Planning of a treatment procedure by medical experts trying to analyze and
individual patients bladder variability

• Reasoning by medical researchers about the general variability of certain organs
across a large cohort of patients

While the former can be approached using shape analysis and comparative visualization
the latter requires appropriate abstraction and representation methods. These methods
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(c) Schmidt et al. [SPA+14]

Figure 3.8: Examples of the comparative visualization approaches presented (continued).

should both be simple enough to provide a good overview and discriminative enough to
not hide important details. The works we looked at to solve this problem were from the
field of cohort visualization.

Connecting a bit to the topic of shape analysis presented in Section 3.2, Klemm et
al. [KLR+13, KOJL+14] provide several methods on how to analyze pathological defor-
mations of the spine across a cohort. The first work on this topic [KLR+13], mostly
focused on the extraction of the spine shapes of all patients and the exploration of
similarly shaped spines by clustering them in groups. By using a comparative side-by-side
visualization, they allow users to comprehend common formations of the spine in the
cohort as well as to detect outliers (as seen in Figure 3.9a). In their following work
[KOJL+14] they generalized the concept of extracting information from images to perform
a cohort analysis. The use case and the extracted image information are similar to the
previously mentioned work. They are put in relation according to a multitude of other
patient parameters like gender and height. The data is aggregated using pivot tables and
histograms are used to show the distribution of a certain parameter. For each histogram
bar, a 3D representation of the associated mean spine shape is presented, which can
be seen in Figure 3.9b. Their approach allows the user to add more parameters to the
visualization, changing the histogram to a mosaic plot, showing not only what the average
spine shape is for a certain group but also its proportion of the whole population. The
works of Klemm et al. [KLR+13, KOJL+14] show how to effectively reduce image data
in a way to analyze its information across a whole cohort to facilitate understanding on
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a broader basis. Especially the use of simple tables as a tool for providing information
to medical experts in a common form, heavily influenced our work. The used data
and analysis methods are not applicable for our data and more importantly, we want
to preserve the temporal context of a patients treatment process, which would not be
possible if we cluster the involved organs extensively.

Looking beyond the topic of shape analysis, the work of Steenwijk et al. [SMB+10]
proposed a framework for the visual analysis of patient cohort data based on the simple
concepts of features, mappers, and studies to analyze difficult diseases. Features in
their work can be any information regarding the state of the patient, be it simple yes
or no blood test results or more complex 3D datasets. These features can then be
transformed using mappers to extract additional information. By combining multiple
features of a patient’s state, a study for a disease is created. To support these analytical
tasks, a wide range of visualizations is offered, including parallel coordinate plots to
show high dimensional features, scatter plots with linked points to provide information
about how certain feature points change over time, and even ellipsoid plots to visualize
the variability inside a set of points in a scatter plot. Three of their visualizations are
shown in Figure 3.9c. The basic idea of presenting information in features and using
combinations of them to understand certain diseases is a valuable basis for any cohort
analysis tool. Their visualization approaches might be rather complex for domain experts
to learn and understand and are therefore not directly applicable to our case.

Considering the high learning curve that many complex visualizations of high dimensional
data, like parallel coordinate views or dimensionality reduced views, led Blumenschein et
al. [BBS+18] to propose a visualization concept aimed at people who are no visualization
natives. Their tool exploits the familiarity of most users with tabular data representations.
Their approach, as depicted in Figure 3.9d, was to use aggregated tables with color-coded
cells to show the average values of the contained elements and also allowed them to make
assumptions across multiple cells, i.e. dimensions. Due to the general inflexibility of a
tabular view, they added the options to stack the tables by splitting cells to show parts
of the aggregated values, added histogram bars to the table column’s labels and even
encoded the number of missing values for a cell by drawing varying dot patterns. All
together their approach provides new users with data analysis tools that are more easily
understandable. The general layout of their tool seems well suited to analyze the values
and variability of high dimensional datasets, although all example datasets in their work
were strictly value vectors and not medical 3D datasets. Additionally, they did provide
some methods of manually recognizing clusters using sorting methods, but they did not
offer any automatic support for users in this regard.

Looking at works in the field of cohort analysis, the previously presented tools are often
intended for the use of experts who already know complex visualization techniques or
they are intended exclusively for medical researchers. The representation of temporal
progression along a treatment is also often not visually encoded. Our tool aims at solving
these problems by being intuitively understandable by users who are only familiar with
simple data visualization approaches and whose information is helpful for both researchers
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trying to understand the whole cohort, as well as medical experts creating dose plans for
individual patients.

To complete this chapter, we have aggregated all the works we looked at in the course of
this chapter in Table 3.1. In this table, we compare all related works to each other based
on which of our research questions they can answer. We can see that none of them can
answer all at once.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Raidou et al. [RCMA+18] 3 3 7 (3) 3 7 (3)
Reiter et al. [RBGR18] 7 (3) 7 (3) 3 7 (3)
Busking et al. [BBP10] 7 7 7 (3) 3 7 3

Landesberger et al. [VLBK+13] 7 (3) 7 (3) 3 7 3

Hermann et al. [HSK11, HSSK14, HK15] 7 (3) 7 (3) 3 7 (3)
Mirzagar et al. [MWK14] 7 3 7 7 (3) 7 7

Ferstl et al. [FBW16, FKRW16, FKRW17] 7 3 7 3 3 (3) 3

Pfaffelmoser et al. [PW13] 7 7 7 7 (3) 3 3

Keefe et al. [KERC09] 3 (3) 7 (3) 7 7 (3)
Tory et al. [TMA01] (3) 7 7 7 (3) 3 3

Schmidt et al. [SPA+14] 3 (3) 7 7 3 7 3

Klemm et al. [KLR+13, KOJL+14] 3 3 7 (3) 3 7 3

Steenwijk et al. [SMB+10] 3 3 (3) (3) 7 7 7

Blumenschein et al. [BBS+18] 3 (3) 3 7 7 7 7

Table 3.1: Overview of all related works and how their individual contributions can be
used to solve our proposed research questions. (7 = No, (3) = Partially, 3 = Yes). As
can be seen no work offers a complete solution to the presented problems.
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(a) Klemm et al. [KLR+13]

(b) Klemm et al. [KOJL+14]

Figure 3.9: Examples of the cohort analysis approaches presented.
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(c) Steenwijk et al. [SMB+10]

(d) Blumenschein et al. [BBS+18]

Figure 3.9: Examples of the cohort analysis approaches presented (continued).
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CHAPTER 4
Visualization Design

In the course of this chapter, we will discuss the ways in which our proposed tool
tackles the aforementioned tasks of cohort and local exploration in segmented organ
data. We will compare the different options available and explain why we think that
the chosen encodings are appropriate choices. Section 4.1 presents the underlying shape
analysis technique we employ to understand the organ shapes present in the cohort.
In Section 4.2 we take a look at how we can solve Task (T1) and explore the whole
cohort using an overview representation. Section 4.3 approaches Task (T2), the detailed
shape exploration. We do this using a, to the best of our knowledge, new visualization
application for 3D shape variability based on a medical 2D slice view.

4.1 Shape Analysis
Tasks (T1) and (T2) both require knowledge about the similarity between the different
organ shapes as well as ways to estimate their local shape variations. To allow this we
first need to decide which data representation allows us to fulfill these two tasks and how
do we convert our segmentation cohort into it. In this section, we will analyze the given
data in contrast to other works, as well as how and why we changed it into the currently
used representation.

4.1.1 Data Transformation

Before any further processing can be done, the first step that needs to be taken is to
find the best representation for the data we are given. The reason for this is, that the
form in which the organ shape information is stored has a large impact on how easy the
implementation of further processing and visualization steps will be.

Initially, the shape data is saved in the format of segmentation line ensembles, where
each organ is represented by its outer contour. The contour is defined through collections
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of lines, defined by numerous points. Multiple lines are stacked on top of each other to
encompass the whole organ [SPP00]. These segmentation lines are created manually by
medical experts. Another format common in this field are triangle meshes, which are
created automatically with segmentation algorithms. Reiter et al. [RBGR18] used this
representation in their work. These representations are created by deforming a predefined
mesh, consisting of vertices and edges until it fits the organ [MBL+02]. Another often
employed method to work with organ data, which can be seen in the work of Raidou
et al. [RCMA+18], is by using a volumetric representation. The information about the
organ is stored at multiple points in a three-dimensional grid, where each point can
contain a value, indicating either the distance to the organ, a density value, or simply
if the point is inside the organ or not [DCH88]. Altogether we found three possible
representations for our organ shape data: line ensembles, triangle meshes, and volumes.

Each of these three methods has different strengths and weaknesses, to determine which
representation is the best for our application we want to analyze them based on a few
key factors: The first factor we are interested in knowing, is the difficultness with which
one can compare multiple elements. The comparative capabilities should also apply to
substructures of shapes. The possibility to aggregate multiple elements in a meaningful
way should also exist. The idea behind this is to create a combined or average version,
for a group of elements. In the case of intersecting elements there needs to be a way
to detect these occurrences and estimate the overlap region. Apart from the aspects
relating to data manipulation, the data also needs to be rendered. We need to consider
the efficiency with which this can be done, especially in web applications with a limited
resource budget. Last but not least, the general memory consumption of the stored data
needs to be taken into account. This is important, if the calculation and visualization
are performed on a server-client basis.

Starting off with the line ensemble shown in Figure 4.1a, the direct comparison between
multiple elements or in our case patients is not easily done as the lines themselves have a
varying number of points and are not defined for all slices in each volume [SPP00]. The
same problem also affects any approach to aggregate these lines, although one could merge
multiple lines into one ensemble. The handling of slices with multiple contours or no
contours might prove difficult and can require complex algorithms [RF00]. Although there
are methods to estimate which contour lines intersect and produce overlaps, this only
works if the lines are defined on the same slice and determining precisely the overlapping
region, again requires algorithmic computation. Visualizing a line ensemble is rather
straightforward as it only requires drawing several lines, one after another. Finally, the
size of a line ensemble is rather large, with around 30 MB per element but varies between
different elements. Some experts define contours with a low number of points, while
others use more, for example, a single organ shape can have between 10 and 40 slices. A
slice can have around 100 up to 2000 defined points each with three components. Looking
at a typical bladder shape in the cohort, the contour has 23 slices with each of them
having around 1200 points, which makes a total of 27.600 points.

Looking at the triangle mesh representation like the one in Figure 4.1b, we can see

40



4.1. Shape Analysis

(a) Line Ensemble

(b) Triangle Mesh (c) Volume

Figure 4.1: Three different representation methods of shape data, shown on the example
of a segmented bladder.
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that a simple direct comparison is only easily doable if a direct triangle-to-triangle
correspondence exists. In this case, the comparison of differences in substructures or the
aggregation of multiple meshes to an average one is also possible, as shown in Reiter
et al. [RBGR18]. If there exists no triangle-to-triangle correspondence these tasks get
a lot more difficult, not only that meshes may have varying numbers of vertices and
faces but also the corresponding substructures need to be estimated beforehand before
any comparisons or aggregation can be performed. Schmidt et al. [SPA+14] tackled this
problem by finding the shortest distance between two nested surfaces along the surface
normal. Estimating the overlap between multiple different triangle meshes is an even
more complex problem than for line ensembles as one has not only to estimate which
parts are inside both meshes, but also how to connect them to form a proper new mesh
[SKB18]. Yet there also exist approximate solutions using bounding volumes that allow
for a faster intersection checking [Lun16]. As triangle-meshes are probably the most
common rendered elements and the base primitive for most 3D applications, they can be
drawn efficiently [AMHH18]. The amount of memory used by them is dependent on how
detailed the surface of the object is, i.e. how many vertices are used. For the example
of a typical bladder shape, this is around 7000 to 8000 vertices with each having three
components.

Finally, volume data has no notion of the object’s actual shape as it only consists of an
array of density or distance values, as indicated in Figure 4.1c. Under the assumption
that all volume files are in a common space, direct comparison and especially aggregation
is possible on the basis of these values. In the work of Raidou et al. [RCMA+18] it was
shown that by accumulating and normalizing multiple shape volumes, one can estimate
the probability of certain volume parts to be inside the shape. A similar approach can
be chosen to estimate overlapping parts of multiple shapes as this can be done by a
simple Boolean operation on a per-value basis, delivering precisely the intersecting region
[Sig06]. Since current graphics hardware is not aimed at drawing volumes, rendering
the data can be computationally more expensive, requiring techniques like tracing rays
from the viewpoint through the volume and accumulating the values and along the path
[RPSC99]. Last but not least the memory consumption of volumetric files can be rather
extensive due to the fact that most of the time the whole volume needs to be saved
even if the shape is present in only a small part of it. This makes it independent of the
underlying shape complexity, but it can lead to large memory consumption. For example,
a volume with a resolution of 450 × 450 × 450 leads to 91.125.000 values per element, or,
if a smaller resolution of 128 × 128 × 128 is used, to 2.097.152 values. In some cases, this
problem can be tackled by compressing volumes into sparser representations, where only
the elements containing information are stored [THGE99].

Looking at all of these representations, we decided to use a hybrid approach with a
combination of volumetric data and triangle meshes. The volumetric data representation
was chosen since it allows us to directly analyze the data, without the need to know
triangle-to-triangle correspondences or the extraction of related surface positions. In
this representation each organ shape occupies the same space allowing not only for
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direct comparison, but also enforcing a shared resolution, i.e. level of detail, both
supporting further calculations. Although the calculations are easier in this space, the
visualization is made more difficult. Its large size makes it hard to use in client-server
structures. Additionally, the volume rendering techniques needed to display it are
also computationally expensive. Therefore we decided to use a surface triangle mesh
representation for more efficient visualizations. Volume data can be transformed into a
triangle mesh by extracting a so-called isosurface, which is a surface connecting points
of equal value inside the volume [LC87]. While the extraction process can take a short
amount of time, the created mesh can be transmitted with far lower cost and be visualized
with common approaches.

4.1.2 Shape Space

The created volumes contain for each timestep of each patient the coverage mask of
the organs present in the cohort. Due to volumes having no inherent notion of which
part of a shape corresponds to which part of another one, we need to apply a further
transformation to gain knowledge about their shape differences and variability. Therefore
the next step is to create a shared space in which the shapes exist based on their similarity,
placing similar-looking shapes close to each other. This information is a vital basis on
which further analysis tasks build. Referring to recent related works, we identified two
main possibilities for the creation of shape spaces: volume-based analysis [Shl14] and
descriptor-based analysis [PI97].

Volume-based analysis describes methods like PCA [Shl14], that treat each voxel value as
an individual dimension and try to model shape variations by separating data points as
good as possible. For example, by either rotating the high dimensional coordinate system
in such a way that variance is maximized or by finding a transformation that separates
groups of data points as far apart from each other as possible. Descriptor-based methods
use instead of statistically derived information, handcrafted features extracted from the
underlying data [PI97]. During the creation of the shape space, the developer defines a
certain number of features, which can be calculated from the data, like the centroid of
the volume or its solidity.

Our decision on what method is the best for our work was based on the analysis of these
two methods based on a few important properties. Most importantly the method should
be able to separate differently shaped structures. Besides, the chosen method is supposed
to work for general cases where no a priori assumptions to the shape can be made. This
also extends to mathematical assumptions made by the method itself. Furthermore, we
also look for a method that allows us to create a reduced representation of the data,
enabling us to store and use large cohorts efficiently. To this regard the computational
performance of the methods also needs to be considered. In regards to the input and
output, the methods should, on the one hand, be able to analyze the volumetric data
and be ideally able to synthesize volumes from points in the shape space. Finally, we
look into the extendability of the methods for the analysis of multiple different organ
shapes at once
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Volume-based analysis methods do not have any previous knowledge about the shapes
they analyze but instead assume that there exist correlations between the voxels in
the grid [HSSK14]. The analysis and the resulting differentiation quality are impacted
strongly if the data is not properly normalized and if there are several outliers in the
data. Certain methods like PCA also make the assumption that the data is spread based
on a Gaussian distribution, which implies that the mean and variance are descriptive
measures. If these assumptions are fulfilled, the result of these methods is not only a
space where shape differentiation is optimized, but also allows the selection of the most
descriptive variables to create a dimensionally reduced space representation. The initially
large volumes can be represented by a small number of variables [Shl14]. Picking up the
previous example, for a bladder volume with originally 2.097.152 values a reduced version
retaining 95% accuracy, calculated using PCA, has after the transformation only 287
values. The computational requirements for volumetric shape analysis methods largely
vary based on the chosen approach. PCA requires all cohort elements to be loaded into
memory at once to estimate the covariance matrix, which can lead to a matrix with
several gigabytes. A machine learning based approach using Autoencoder networks can
work with small batches of data at a time [VLBM08]. A benefit of these methods is that
one can invert the transformation from a reduced space to the original one, creating
not only elements that were previously present in the data but also valid elements for
arbitrary points in the reduced space [AW10]. Extending these methods for multiple
organs is possible if they share the same volumetric space. This extension might impact
the organ differentiability within organ-type groups.

Descriptor-based analysis methods base their ability to differentiate multiple shapes
on the extraction of manually defined characteristics [PI97], including features like volume
or perimeter [LL12], or information obtained by a Fourier analysis [VS01]. The quality
of the differentiation is largely based on how good these descriptors are at identifying
certain shape changes. As most descriptors are created to be used for specific shapes,
they may struggle with certain structures with previously unexpected forms and have
troubles differentiating them [RHC99]. This introduces the need to add new features
to improve the results, which are created on initial assumptions of the shapes found in
the data. Similarly to volume-based methods, the extracted features create a reduced
space, where the number of dimensions is based on the extracted features. For example,
in a previous work, Raidou et al. [RCMA+18] extracted 14 features for each bladder.
Reversing this process to synthesize shapes from feature points is not possible, as there
can be an arbitrarily large number of shapes leading to the same descriptor values [DS08].
One of the biggest benefits of these descriptor-based methods is that they are rather fast
to compute, as they do not require knowledge about the whole cohort, but can instead
be extracted on a per-patient basis. Concerning its use for multiple different shapes,
descriptors can perform better in terms of inter-organ differentiability, as the analysis of
each organ is not influenced by others [RBGR18].

Directly comparing the results of both shape analysis methods as depicted in Figure 4.2,
we can see that both methods lead to similar results. Both methods can group similar
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Figure 4.2: Rectum Bladder Prostate CTV Comparison of two
different shape spaces, one created directly from volumetric (Volume) data and one
derived from shape descriptors (Descriptor). The former was created from a 128 ×
128 × 128 volume sampled 32 × 32 × 32 times and the latter is based on 25 shape
descriptors calculated from the volume coverage mask, these descriptors include volume
and orientation.
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organs close to each other, as well as highlight outliers. Apart from differentiating
a multitude of arbitrary organs and finding common patterns for each type, we also
aim at recreating the initial shapes after the analysis. Thus, we decided to employ
a volume-based analysis method. This is also in accordance with other works in this
field showing the benefits of these methods like the one of Busking et al. [BBP10] for
the analysis of anatomical shapes. Ferstl et al. [FKRW16] also have shown that using
these volume-based approaches, one can perform successive calculations upon them like
estimating uncertainty and variance. The initial calculation of the shape space for the
whole cohort has high computation and memory demands. The resulting shape space,
and especially the dimensionality-reduced elements are able to make up for this as they
require far less memory. We think, that the benefits of a volume-based method outweigh
the downsides. Especially as it is possible to estimate the transformation into the reduced
shape space in a preprocessing step and apply it to the data iteratively, allowing for easy
addition of new elements. The creation of a unified shape space for all organs is not
feasible using volume methods. The resulting space would largely focus on differentiating
the organs from one another, which does not provide us with important new information.
We already know the correct organ of each shape and are much more interested in the
per-organ variations. We, therefore, decided to perform an individual analysis for each
group of organs. This also leaves the option open to add new organ shapes, without the
need for recalculating the whole shape space.

4.1.3 Registration

According to Kendall et al. [Ken77], if one can filter out effects resulting from translations,
changes of scale and rotations and declare that shape is "what is left". For this reason,
most shape analysis methods employ some kind of registration strategy that tries to
align the elements in the cohort in such a way that they are most similar to each other
and the only remaining differences between them stem from shape variations. Generally,
the goal of this step is to remove any factors like position, rotation or other things that
we are not interested in understanding before the data is analyzed [HK15]. In addition,
this also reduces the amount of information necessary to be modeled in our statistical
analysis. The question we must, therefore, ask is: What kind of registration preserves
the information we are interested in best?

The simplest approach is to use no registration at all, in which case all elements in the
cohort are assumed to already share a common frame-of-reference and that any differences
in placement are intentional. It is also a valid option in cases where the data is already
registered beforehand. Applying a rigid transformation to the underlying data is done
by defining both a fixed image or volume and a moving one. The latter image then
is translated and rotated in such a way that it overlaps as good as possible with the
fixed image [AF07]. Estimating the ideal position can be done in a multitude of ways,
either by using characteristics like the center point and size or by trying to match similar
values from both images and move them on top of each other. An affine transformation
works similar to the rigid one, although instead of being restricted to only translation
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and rotation it also allows the transformation of the image scale and enables shearing
[FA96]. This allows for even more precise image alignments while introducing distortions
to the moving image. Common algorithms extract interesting features in both images
and match similar features to one another, creating a transformation matrix [DSTA95].
All of these approaches are shown in a simple example in Figure 4.3

Based on the data we are provided, and the shape information medical experts expect to
extract from the cohort, we are interested in analyzing said methods based on several
aspects: Most importantly, the ability to model the general variabilities a certain organ
undergoes, independent from other influences like organ position. Apart from structural
shape variations, we also want to analyze volumetric changes and need a method that
allows for this. As we are dealing with medical data, the chosen registration algorithm
must not introduce artifacts, i.e. shape variations that are not present in real humans.
Finally, we also need to determine the reference to which the images shall be aligned to.

Starting off with the case of simply using no registration, the volumetric model would
largely focus on the change of position in the organ and model these as they have the
largest impact on the data. This would also introduce artifacts if a point between two
shapes is reconstructed, even if the two shapes look equal and are only moved apart
from each other [HK15]. The statistical analysis would place them apart from each other
and the reconstructed point would probably resemble a merged version between the
two shapes. Under the assumption that two bladders are placed at their corresponding
position in the body, this approach does not hide changes in volume. In addition, this
method has no need for defining a registration target towards which the other images are
moved.

Applying a rigid transformation to our volumetric data would lead to centering the
objects inside each other, the resulting analysis would be largely independent of positional
variances and would focus on shape and especially volume variations. A problem that
might occur with this method is its tendency to equally spread out variations across
the whole shape. As the motion of organs inside the body is restricted, volume-based
shape changes might only lead to growth in one direction. By using a centroid based
alignment strategy, these changes would falsely look as if they occur across the whole
object [PF03, CGL+10]. In regards to the registration target, any cohort element would
suffice, for our case, where only a translation is required simply centering the images in
the middle of the volume would be a good option.

Affine transformations are probably the method best suited for focusing solely on shape
variations as they tend to remove all influences based on translation, rotation, and scaling,
only leaving actual shape variations [PBTM06]. This perfect alignment removes all
knowledge about the volume of the organ and only allows the analysis of small local
changes. Under the assumption that the registration is able to assign the correct parts to
each other, this method produces the best results of possible shape variations with little
restoration artifacts. However, the problem is what should be used as the base shape,
because a poorly chosen deformed version may lead to unnecessary transformations of
the moving organs. Therefore an estimated mean shape is used.
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While each of these methods has certain benefits, we can not say that anyone of them is
a good solution for the analysis of organ shape variations, especially if the deformation
through volume changes should be analyzed. We, therefore, propose a method that only
partially applies a similarity transformation, which is a rigid transformation without
rotation. This leaves some parts of the cohort in their initial frame-of-reference, meaning
that for them no registration is performed. The reason for this being that the organs
themselves are already pre-registered on a per-patient basis by medical experts, meaning
that all timesteps of a patient share the same space. Therefore we leave all organs of a
single patient at their relative position to each other, only correcting small translative
changes based on the center point of the CTV or prostate, both of which are considered
to have little to none shape changes themselves. All patients are then aligned with each
other by estimating the mean center of all organ positions across time. Although this
procedure can add small translative variations, it also preserves the volume changes
and their main growth directions. The effects of all different registration methods for a
concrete patient are shown in Figure 4.4.

4.1.4 Vectorization

Based on the fact that most statistical methods used for volume analysis require the
data to be arranged in a two-dimensional matrix with the observations as rows and the
features or variables as columns, we need to find a way to transform our cohort in such a
representation. Firstly we need to unfold each individual timestep currently represented
as a 3D volume in such a way that it can be represented as a 1D row vector. Secondly, we
also need to unravel the overall cohort structure of patients and their individual timesteps
into a column vector with all timesteps being placed one after another. Therefore we
are trying to find good sampling strategies for both the volume unfolding and cohort
unfolding. We look into two different curves: scanline curve and Hilbert curve [Hil35].
By sampling these curves we are able to transform higher dimensional spaces into 1D
ones.

The most common approach for unfolding a high dimensional structure like a matrix
to a vector is the scanline approach. The elements are traversed in the order of their
appearance, in case of a volume, this would mean going through the contents slice by slice
and for each slice iterating over each element in a row-wise fashion [WFG+19]. After one
slice is finished, one jumps to the next slice. As a fractal structure, the Hilbert curve has
a more complex scanning behavior. It can be best understood by following its creation
process, which starts with a simple U shaped element [MJFS01]. The first steps of its
creation are shown in Figure 4.5. This process can also be extended for higher dimensions
and ensures that the line visits each element of the grid at least once if its side lengths
equal 2k, with k being the iteration level of the Hilbert curve [But69].

One of the factors we take into consideration is the preservation of the semantic structure
in the unfolded data., e.g. are patient timesteps in order or are previously close volume
points also close to each other. Furthermore, the scalability of the sampling method
is also of importance to us, especially the behavior when appending new elements or
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(a) No Registration (b) Rigid Registration

(c) Affine Registration (d) Our Registration

Figure 4.3: Comparison of four different registration methods on a simple 2D example,
with the goal being to align the two boxes as good to each other as possible and center
them at the origin.
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(a) No Registration (b) Rigid Registration

(c) Affine Registration (d) Our Registration

Figure 4.4: Comparison of four different registration methods on the example of two
bladders from a single patient at two different points in time. Looking at 4.4d shows the
benefits of our method as it neither overly centers the shapes as in 4.4b and does not
change the initial volume as in 4.4c.
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Figure 4.5: A complete iteration includes the following steps: The initial element 4.5a is
shrunk to half its size, after which it is replicated four times and placed at the positions
and rotations indicated in 4.5b. These initially separated elements are then connected
leading to the curve in 4.5c. This element can than undergo the same process to generate
the next level of the Hilbert curve [Sag12].

changing the overall number of elements. If desired, is there should be a way to change
the sampling frequency in a way that the aforementioned properties are still preserved.
Overall we are also interested in knowing how easy and efficient the sampling positions
can be estimated.

The basic uniform sampling of the Scanline method, as shown in Figure 4.6a, ensures
that locality is preserved in the scan direction, meaning that only neighbors along the first
dimension are preserved. If the scanline reaches the end of a line a jump follows which
resets it to the start of the next line, which results in the large distance between start
and end elements [WFG+19]. In general, this method scales rather well as its calculation
is not bound to any restrictions in regards to the size and aspect ratio of the volume. In
addition, the sampling rate can simply be decreased to create varying numbers of lower
detailed sampling densities, for example, by only selecting every second or third element.
Yet one has to consider alignment issues in other volume slices. Computationally the
sampling points are easy to calculate as they are created by iterating along the dimensions,
after reaching the end of one the next dimension is increased by one step and the lower
ones start at the beginning [TBK03].

Space-filling curves, like the Hilbert curve [Hil35] in Figure 4.6b, have the property of
preserving locality, meaning that they iterate over all local points, across each dimension
in a cluster like fashion, where they only move on when all close points have been sampled.
This means that although neighboring points are not always right next to each other in
the vector, they are always close by. The Hilbert curve also lacks the jumps the scanline
method has at the end of lines. One trade-off is that the method is only defined for
spaces of 2k size. Although one could just scale them to match the aspect ratio, the
sampling rate is constant along each dimension [But69]. This also affects the options to
create several levels of detail, as the sampling rate can only be doubled or halved equally
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(a) Scanline curve (b) Hilbert curve

Figure 4.6: General curve patterns for a row-wise scanline curve and the third iteration
of a Hilbert curve. Both of which sample the underlying space in an 8 × 8 pattern. The
color encodes the distance to the nearest point on the curve.

across all dimensions. However, all discrete sampling levels, still cross the volume in
the same fashion, reducing the risk of alignment errors. The computation of individual
sampling positions is expensive as it is an iterative process where for each level k, all
previous k − 1 levels have to be estimated first [KEB99].

Based on this information, we selected the scanline approach to unravel the individual
observation data for patients and timesteps. The statistical analysis in the next step has
no need for knowing which data points belong together. Nonetheless, we are interested
in preserving the temporal connection, i.e. which timestep comes before which one. By
using this approach and sampling across the temporal dimension we can create a simple
1D vector were all timesteps of the first patient are followed by the timesteps of the
second patient and so forth. Doing so not only allows us to easily select certain patients
and their timesteps by using multiplication, but we can also efficiently add new patients
to the data, by appending them in the vector. For the unfolding of the individual 3D
volumes, we chose to select the Hilbert curve. This does not have any computational
implications for our results. Instead, we used it to analyze how the shape differentiation
capabilities of our approach change if the sampling density is reduced. Furthermore, we
also looked into different options, based on the work of Weissenbck et al. [WFG+19] to
use an unfolded 1D line to show differences and overlaps in volumetric structures, which
we left open for future improvements. An example of this unfolding process can be seen
in Figure 4.7.
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Figure 4.7: The same density field is sampled and mapped from 2D to 1D, once using
a row-major Scanline curve and once using the Hilbert curve. The resulting lines show
that the locality preservation of the Hilbert curve leads to fewer jumps and to a closer
placement of neighboring parts.
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4.1.5 Analysis & Dimensionality Reduction

After the initial segmentation contours are transformed into 1D vectors they can be
analyzed. The fundamental goal of this step is to not only transform the initial cohort
data into a representation where underlying structures and patterns are made visible, but
also to create a lower-dimensional embedding allowing us to create a memory cheap way to
store and process large cohorts of patient data. There is a huge variety of different feature
extraction methods that try to do just that, including Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), Autoencoder Networks, and t-Stochastic
Neighborhood Embedding (t-SNE), to name just a few.

Principal Component Analysis is a statistical analysis method that tries to derive new
features from the initial ones by linearly combining them in a way that variance along
the new features is maximized. Two important factors in this creation are that the new
features are uncorrelated and that they are ranked in the order of the variance they
encode [Shl14]. A similar approach is followed by the Linear Discriminant Analysis, but
in contrast to PCA, which is an unsupervised learning method, LDA is a supervised
one, using labeled data. Instead of maximizing the variance encoded in each feature like
PCA, LDA tries to maximize the separability between the classes of the data [DHS12].
Both methods allow the creation of a transformation, from which a subset can be chosen
to create a dimensionality reduced representation, which maximizes their respective
properties. Autoencoders are different from the previous methods based on the fact
that they are a neural network-based approach, which calculates non-linear feature
combinations. Their basic mechanism is that they try to recreate their original input, all
the while their hidden layers have fewer neurons than the input and output [VLBM08]. A
simple version can be seen in Figure 4.8. The network tries to model the output in such
a way that it matches the input as closely as possible. Extracting the values of the few
neurons in the middle gives a lower-dimensional embedding. Another approach trying to
model non-linear relations in the data is t-SNE. In a two-step process, the algorithm first
calculates a probability distribution between neighboring points and then tries to recreate
this distribution in a dimensionality-reduced lower space as good as possible [MH08].
As with many machine learning algorithms, this process is iteratively optimized until a
sufficient solution is reached, where the non-linear relationships of the high-dimensional
space are reflected. These four methods are by far not the only techniques that can be
employed in this case. We restrict us to analyze those methods because they represent a
mix of linear and non-linear, as well as supervised and unsupervised techniques, several
of which were already employed in other works in this field.

For deciding which of these techniques is the right option we look at several indicators.
As each method is based on a variety of mathematical calculations, several of which
make assumptions on the input data, we, therefore, need to analyze, which of these
are fulfilled for our case. The calculation process often requires the creation of large
matrices, which might not fit in the memory, or the process itself may take a long time to
finish. Therefore, we need to not only know the general computational requirements, but
also how the approaches scale with more patients and timesteps and even if additional
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Figure 4.8: Basic structure of an Autoencoder network, consisting of the encoder, which
transforms the input image down to a previously defined number of output values, and
the decoder which takes said output values as input and tries to recreate the original
image as good as possible. Each element consists of the same components: The weight
matrix w, the bias b, and an activation function.

elements can be added later on. Last but not least, as we deal with medical data the
result of the analysis should be reproducible and deterministic, meaning that we get
the same result for consecutive computations. Finally, we are interested in knowing if
elements can be synthesized, allowing us to save the reduced versions and only re-create
the original shapes on demand.

PCA is based on the assumption that the data follows a Gaussian distribution and that
the direction of greatest variance is the one containing the most information [Shl14].
Although this is often true, it can lead to misleading results if the inner group variance
is higher than the one between groups, due to noise (as seen in Figure 4.9). The general
computation of the principal components is based on calculating the eigenvalues of the
covariance matrix derived from the original data. The estimation of this matrix is often
a problem as it has the squared size of the number of points, which can result in several
gigabytes of data for an observation with 2.097.152 values created from a 128 × 128 × 128
volume, especially if multiple organs are analyzed. It should be noted, that there exist
different implementations that tackle this problem, for example, by making the covariance
matrix size depend on the number of observations rather than dimensions or by not
computing the covariance matrix at all [Row98]. Although, PCA is sensitive to outliers
in the data, it produces for the same input dataset always the same output and is,
therefore, deterministic [CLMW11]. The result of PCA is a matrix of all uncorrelated
linear combinations of the initial features, from which a subset can be chosen to project
the data into a lower-dimensional space. The number of selected features determines
how much of the initial variance, and possibly detail, is preserved. This process results
in the creation of a transformation matrix which can be used to quickly transform points
into the reduced space, but also allows one to reverse this transformation creating shapes
from various points [DLMB04, Shl14].

LDA makes similar assumptions to PCA in regards to the distribution of observations,
but also requires explicit knowledge about which observations belong together, as it is
usually employed in supervised learning [DHS12], an example can be seen in Figure 4.10.
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(b) Intergroup Variance: Low Intragroup Variance: High

Figure 4.9: Two examples illustrating how PCA works and showing how data variance
affects the results. As PCA determines the principal components based on the dimension
encoding the most variance, the data in the two groups in the first example can be easily
separated as the difference between them is larger than the one inside each group. This
assumption can lead to the problem shown in the second example, where the elements
inside the group experience far larger variations and PCA fails to separate the groups
appropriately.
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Figure 4.10: An example illustrating how LDA works and how it does not suffer from
the restrictions as PCA. Contrastingly to PCA, LDA does not solely rely on the variance
present in the data but also has access to the correct group labels. Therefore it can solve
cases, which PCA cannot, namely: Intergroup Variance: Low Intragroup Vari-
ance: High

LDA needs a defined set of labels to work with, in our case this could, for example, be the
patients with and without induced toxicity or what kind of organ a shape is. An implicit
assumption made by the algorithm is that the class sizes are roughly equal and the inner
class distributions are also Gaussian [MK01]. A property in which it is similar to PCA
is that its performance and memory consumption grow strongly for high-dimensional
feature vectors. It also creates matrices with squared dimension sizes for both inner
and between-class variance. Furthermore, it requires O(n3) operations to estimate the
eigenvectors for its transformation matrix [GRM15]. The algorithm itself is deterministic
and only varies if the input is changed. The resulting transformation does not provide
the option to manually select a subset of features and decide the size of the created
lower-dimensional space, but instead always reduces the dimensions to the number of
classes minus one [McL04]. Similarly to PCA, LDA also provides the reduced points
in combination with a transformation matrix as a result. The matrix can be used to
transform new observations into the reduced space and to transform points from this
space back to the original one, allowing for shape synthesis.

The next option we evaluated was the use of an Autoencoder neural network. Different
from the previous two methods it requires an underlying neural network data structure,
consisting of several layers of neurons [VLBM08]. The training of these networks is
performed using backpropagation, where the reconstruction error of the network is used
to modify the neurons of the network back-to-front. This process is often computationally
expensive and it can require multiple training iterations until the network provides
sufficient results [LBH15]. It has been shown that using networks pre-trained for certain
image data can speed up this process. While the computation process might be rather
lengthy, this method does not have the same scalability issues as the other approaches.
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Figure 4.11: By training the Autoencoder network in Figure 4.8 to analyze images
of cross-sections of our organ shape cohort, we analyzed how these networks work in
principle by looking at their weight matrices in their centermost layer. The two shown
images indicate which regions are deemed important. We can see the combined shape of
rectum and bladder in the left image and a rough indication of a prostate shape in the
right image.

Although it has similar problems with large dimension sizes, the quality of its output
increases, the more observations are provided [EBC+10]. However, it does not require
the whole cohort to be loaded into the memory at once, but it instead can use only one
portion, i.e. batch, of the cohort at a time. If the network does not have any pre-trained
weights to start with, it is initialized with random values, leading to non-deterministic
behavior, meaning that some instances may result in suboptimal solutions. Similarly
to PCA, the number of dimensions in the reduced space can be manually chosen by
setting the number of neurons in the smallest center layer. The weights of these layers
can even be visualized as seen in Figure 4.11. In contrast to PCA, one cannot freely
select more or fewer dimensions, as this would require a new training process [MSJ+15].
The reconstruction of elements is rather straightforward as the general purpose of the
network was to generate these elements with optimal quality. The only restriction in this
regard is that, to achieve reasonable performance, the observations used for training and
reconstruction are rather small and result in low-resolution shapes.

t-SNE is not a mathematical technique like PCA or LDA, but instead a probabilistic,
non-linear approach, which tries to model complex data distributions [LBH15]. Although
t-SNE creates a non-linear projection it still assumes that the distance between points
is linear as it uses the Euclidean distance [MH08]. The process is iterative and there-
fore computationally expensive. This means, that for datasets with large numbers of
dimensions another dimensionality-reduction technique like PCA should be employed
beforehand [VDM14]. Recent advances like hierarchical t-SNE seem to alleviate this
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problem [PHL+16]. The overall projection process normally has multiple possible local
minima, which means that consecutive runs can lead to varying results, without a guar-
antee that the algorithm has found the optimal solution. The quality of the solution, i.e.
how well groups of similar elements are identified, depends largely on the chosen initial
parameters of the algorithm and inadequate choices could even lead to false-positive
results [WVJ16], which can also be seen in Figure 4.12. In contrast to the other methods,
t-SNE only provides the positions of the embedded points and does not offer a direct
transformation matrix to add new elements into the space. These axes of the created
space also lack an inherent meaning and have no connection to the initial features [MH08].
This also means that the reconstruction of shapes from a point in the space would be
both meaningless and impossible.

For the analysis of the shapes present in the cohort, we decided to use PCA over the
others. We assume that the data is normally distributed and meaning that this analysis
tool can be employed. We are also more interested in the global structure of the data
within organ types than the overall differences between different organ types, a simple
example of the latter is shown in Figure 4.13. A joint shape space of multiple organs,
could be investigated in future works. Furthermore, we think that PCA has the best
capabilities to deal with the far higher number of dimensions when compared to the
number of observations. Due to the relatively small size of the cohort, we did not use
a covariance-free version. Using this version could be an option for future extensions,
especially if more patients are added to the cohort. Most importantly our decision is
supported by previous works of Ferstl et al. [FKRW16], who have also shown in their work
the benefits of analyzing shape variability using PCA, as it allows for precise selection of
the desired reduction and reconstruction quality. For the identification of groups inside
the cohort we do not only rely on PCA, but instead combine its results with t-SNE.
It has been shown that these two methods work well in conjunction and allow for a
better identification of clusters, as t-SNE analysis more complex, non-linear, relationships
[RBGR18]. We discuss the use of t-SNE in more detail in the following section. In
general, we found that it produced more pronounced groups of similar patients than
other approaches, which results in more stable groupings.

4.2 Cohort Visualization

With the ability to compare different shapes of the same organ to each other, we can now
start trying to solve the task of analyzing the whole cohort. The general goal we ought
to achieve is allowing researches looking at a large collection of patients and timesteps,
to precisely identify patients or organs of interest. We try to make only few a priori
assumptions to what might be of interest for a researcher. However, we already provide
certain measures based on previous works. Most importantly as the cohort visualization
is only one part of an entire analysis tool, we define its main focus on providing both
an overview of the whole cohort as well as allowing users to select parts of interest for
detailed shape inspection.
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Figure 4.12: Two examples of how t-SNE (Iterations: 1000, Perplexity: 20) transforms an
input set of random points. In the first case the algorithm is able to clearly separate the
two groups from each other, creating two clusters of points. The second example
shows a similar result as it also indicates two groups in the data, although the initial data
just contains random points from a single distribution , highlighting the possibility of
false positive results.
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Figure 4.13: Rectum Bladder Prostate CTV Comparison of four
different analysis methods applied to the volumetric vectors of all organs of all cohort
elements, with the idea of showing how well these methods are able to detect similar
organs. Both PCA and the Autoencoder network show similar results, where the organs
are spread across the whole space and similar organs are close to each other. LDA and
t-SNE are able to show more pronounced groups of organs, hereby it is important to
know that LDA was provided with the organ labels initially. In most cases the outlier
CTVs, resulting from extremely large treatment volumes filling the whole bowel, are
clearly visible.
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4.2.1 Overview First

Following the information seeking mantra of Ben Shneiderman [Shn03] the first step we
undertake is to provide users with an overview of the whole cohort data. The main idea
behind this step is to create a zoomed out, high-level representation. That should convey
the general patterns present in the data before the user starts her own more in-depth
investigation.

Similarity Estimation

The dimensionality-reduced space creates a representation where each cohort data point is
represented by one position in space, where similar shapes are placed close to each other.
We are still left with the question what the best way would be to analyze this space, as
we strive to provide users with information about the general similarities between shapes
and shape groups but also about how an organ shape changes during the treatment
process. One possible task requiring this could be the search for treatment instances,
where the bladder filling protocol was violated, e.g. the patient had an empty instead
of a full bladder. We, therefore, look at three different options allowing us to estimate
similarity in one way or the other:

The straightforward way would be to directly compare the positions of shapes in their
respective shape spaces. As mentioned before, these shape spaces are created on a per-
organ basis by transforming the high dimensional 3D volume vector with 2.097.152(128 ×
128 × 128) dimensions into a lower-dimensional space where each shape is represented by
a point. The number of dimensions kept, indicates the amount of detail preserved. In
the case of pelvic organs, we need somewhere between 5 to 20 dimensions, depending on
the specific organ, to preserve 95% of the shape details. Instead of encoding the point
positions directly, another option could be to use a distance metric, to estimate how
far certain points are from each other, hereby N dimensions are summarized into one
[DD09]. The result can be seen as a measure of similarity. Instead of reducing the point
to a distance value, the similarity of all observations could also be estimated by clustering
them in groups based on the predominant shape types in the space [Jai10].

Our decision on the best way to tackle the tasks we are facing is based on several
factors: Overall the approach should allow a comparison of similarity across timesteps
and patients. An expert should be able to understand how a shape varies across multiple
treatment instances, and how common such behavior is for patients. Moreover, it should
allow the identification of outliers, for example, where a bladder assumed an unusual
shape, in relation to the overall shape of a single patient or in general. Finally, the
approach should scale appropriately if more dimensions are added to the input data, for
example, if more principal components are used for the shape space creation. Generally,
we also want to reflect upon the extendability of the approach for multiple organs. The
scaling behavior also extends to the visualization itself, as we need to know the number
of dimensions the output has.

Using the shape space position of the organs means that the similarity is encoded by
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Figure 4.14: Scatter plot of all bladder shapes in a 2D shape space. The similarity of
certain shapes is implicitly encoded by their respective proximity.

their coordinates, i.e. a 5 to 20 dimensional vector. A simple version can be seen in
Figure 4.14. Our shape spaces are still larger than the two or three dimensions we are
used to. A problem with high dimensional spaces is that the elements inside them are
usually spread out and judging the proximity of elements to estimate their similarity or
find outliers gets quite hard. To employ an often-used example finding a single coin on a
line of 100 metres does not take long, finding it in a field of 100m× 100m, i.e. a 0.714
football field, can take quite a while and finding it inside a volume with a side length
of 100m, i.e. a 45 stories building is nearly impossible [AHK01]. In terms of scalability,
as the input and output values are the same, their dimensionality would also grow or
shrink with the used principal components [Shl14]. In addition, we could compare more
than one organ by joining their high dimensional positions. For this case, it should be
noted that most probably different organs have varying numbers of dimensions. This
would result in a larger joint shape space position-vector. The employed visualization
methods need to process the output of this method, which most certainly ends up with
observation vectors that have more than three dimensions.

Using distance functions enables a more direct encoding of similarity. It allows for
the comparison of two points of arbitrary dimension and transforms them into a 1D
value, which describes the distance between them, which is a similarity indicator in shape
spaces. Two choices need to be made when using such a metric: the formula used for
the calculation and the target point we compare a point to. There is a huge variety of
different ways to calculate a distance metric, with varying properties, making the right
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Figure 4.15: Scatter plot of all bladder shapes in a 2D shape space. The similarity of
certain shapes is encoded in the distance to the mean shape in the center. The coloring

and rings represent the distance to this point, where dark blue denotes
increasing distance.

choice important to ensure valid comparisons [DD09]. Furthermore, while it would be
possible to estimate the distance from each point to each other one, this would square
the number of values. Therefore a valid target point needs to be chosen for each point to
which its distance is estimated. Possible target points could include the mean or median
of the shape space or the patient, encoding the difference on a global or a per-patient
basis respectively. An example of the distance to the mean estimation using the Euclidean
metric can be seen in Figure 4.15. In this representation, especially outliers would be
more easily detectable, as they would have an unusually high distance [ZSK12]. Even if
the number of dimensions increases this mainly affects the number of calculations, as the
resulting distance value is always one dimensional. One could extend this approach to
multiple organs, by concatenating their coordinates. The probably different numbers of
shape space dimensions would lead to an unequal weighting in the distance calculation.
Therefore distance measures should only be calculated on a per-organ basis. The following
visualization approaches only have to deal with a single value per cohort element and
organ to visualize.

In many ways clustering may deliver similar results as the distance calculation, as it also
takes the high dimensional shape space embedding of the cohort elements and transforms
them into one value per cohort element and organ. The difference is that instead of
measuring the precise distance to a defined target, clustering tries to find groups of
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Figure 4.16: Scatter plot of all bladder shapes in a 2D shape space. The similarity is
encoded by the cluster each shape belongs to, indicated by the color. The four clusters
were found by using k-means, the crosses indicate the respective cluster centers.

similarly shaped organs in the data [Jai10], as seen in Figure 4.16. The similarity would
mean in this context belonging to the same group and outliers would be, for example,
single timesteps being part of a separate group. To work properly, this process requires
similar choices like the distance measure one, including a metric and more importantly
a clustering algorithm [XW05]. The latter decides how similar groups of shapes are
detected. Increasing the number of dimensions of the shape space coordinates mostly
affects the calculation process and not the size of the resulting clustering. Similarly, if
combining multiple organs special precautions should be taken that the vector of one
organ does not outweigh the ones of the others. Visualizations that aim at showing the
estimated shape group categorizations, need to handle one value per cohort element and
organ [RCMA+18, RBGR18].

In the end, we decided to use two similarity indicators and create visual encodings for
both of them. Namely, we employ distance calculation and clustering. We use the former
one to directly estimate outliers on a per-patient basis, by measuring the distance to
the mean shape of the patient. It also gives a good impression on how much the shape
varies across the treatment process of the patient. These subtle differences would not be
visible if a clustering would be employed for this task, as this would only offer a binary
variability option, i.e. either the shape belongs to a cluster or not. The information,
to which shape type a certain cohort element belongs, may be too generalizing for an
internal shape analysis for a single patient. Yet, it allows for a better overview of the
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whole cohort. Clustering extracts main shape groups of patients, which can be analyzed
and compared to one another. This allows users to understand, what shape types exist
and how prominent they are. The general similarity of these two methods also makes
a combination easy, as both of them deliver a single output value largely independent
of the higher dimensional input and they can be visualized in similar ways. It should
be noted that we used the Euclidean metric to estimate distances in both cases as it
is one of the most common approaches. Its use should in future works be evaluated as
many other metrics might provide better results, especially in higher-dimensional spaces
[AHK01]. For the clustering, we employed a hierarchical algorithm with complete linkage
based on the work of Klemm et al. [KLR+13], who already showed its application in the
analysis of medical shape types.

Shape-Similarity Visualization

From the previous calculations, we receive a single distance or cluster value per combina-
tion of patient, timestep and organ. For a single organ, this would already include three
values to encode, meaning that this number only grows, the more organs are inspected.
We, therefore, needed to find a way of visually encoding the information to support both
the search for highly varying patients, common types of shapes across the cohort, and
last but not least, performing all these tasks with parts of the data being missing, as not
all organs are present for all patients. With these tasks at hand, we looked into several
possible visual encodings, that are commonly used if large amounts of complex data need
to be analyzed [FGW02].

Probably one of the more classically used approaches in this area are scatter plots. By
drawing the data axes orthogonal to each other, a space is created in which each data
element is represented by a single point [Spe01]. Parallel coordinate plots (PCPs) are
a commonly employed plot in visual analytics if someone needs to explore a complex
data set with more than two dimensions in search of interesting elements or correlations.
Instead of plotting all dimensions orthogonally to each other, they are drawn in parallel
and observations are represented by polylines traveling across these dimensions [ID90]. By
taking the axes of a parallel coordinate plot and arranging them in a circle, the polylines
end up looking like stars. This approach is also called a star glyph representation and
mainly aims at using our innate perception of shapes to provide us information about
the data [War02]. Finally, we also looked into tabular representations, which rely on our
knowledge in the use of spreadsheets, we create visual representations of the contained
data, for example, by creating a row for each element in the set and use the columns to
encode the values in each separate dimension [BBS+18].

To judge which of these methods support the visualization of interesting properties
in a way that can be understood by medical experts, we evaluated them using a few
simple properties. First and foremost the chosen visual encoding needs to preserve the
patient and timestep information. The preservation of contextual information is of great
importance as we assume that certain shape patterns and variations are characteristic for
patients and may also change over time. It should also be possible to extend the chosen
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method to more than one organ, i.e. scalability to more dimensions. This also includes
the need for having the ability to monitor the shape changes for multiple organs of the
same patient. Or by formulating this problem a bit more general: Using the encoding
one needs to be able to detect patterns and correlations across different dimensions, e.g.
patient, timestep, and organ. As our cohort already contains a large number of elements,
we also need to consider the scalability for large numbers of elements, and the handling
of missing information. We also need to look at the possible interaction methods, which
should allow users a more in-depth exploration of the data.

Scatter plots are normally only used for 2D data, although in some cases also 3D plots
are used. The resulting collective shape of all points often provides a good indication for
certain correlation patterns. In general, this approach allows viewers to judge the overall
distribution of observations in space [Spe01]. Scatter plots also provide information about
possible outliers or groups. This method is largely restricted in terms of what information
can be shown and what is lost. One can only take two features out of many and use them
to draw the points in the scatter plot. One example could be taking the variability of two
organs, e.g, bladder, and rectum. In this case one could see possible connections between
the bladder and rectum variations, but the information about which timestep and patient
the points belong to is lost. In general, this also limits the amount of information that
is displayed, as the number of dimensions, and therefore the possibility to show the
variation of multiple organs, is severely restricted in this representation method. One
method to overcome this problem is to not only rely on the position in space to encode the
information, but also to use other channels like color and shape of the markers, to include
information not encoded along the axes, like patient or timestep [KHD+10]. Another
more common approach would be to create multiple scatter plots, each encoding two out
of the complete set of dimensions. This allows the user to see correlations and patterns
for every feature combination, as seen in Figure 4.17. A downside of this so-called scatter
plot matrix is that it grows quadratically for every new feature, consuming more and
more screen space and leaving less space for each plot [Spe01]. The interpretability of
scatter plots suffers if lots of data points a drawn, which start overlapping each other.
This makes it hard to judge how many points are in one place. Still, there are certain
methods like kernel density estimation that try to overcome this problem, by showing
how many points are in certain places [Wor89]. Direct interaction methods often come
in the form of brushing in combination with linked views. For example, by selecting a
region in one scatter plot the chosen elements are highlighted in the other plots of the
scatter plot matrix, or even a detailed view may be provided. Tooltips when hovering
over points are also employed to provide detailed information.

One of the biggest restrictions of scatter plots and scatter plot matrices is their limited
extendability for searching correlations in higher dimensions. This problem is tackled
by parallel coordinate plots because they allow users to encode larger numbers of
dimensions with less visual growth. An example of this is shown in Figure 4.18. Corre-
lations are then judged based on the line patterns between neighboring axes [FGW02].
Although this approach can handle large numbers of dimensions, correlations between
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Figure 4.17: A scatter plot matrix encodes the respective shape difference values for
all organs and the patient and timestep ids. Each cell takes two of these features and
creates a 2D scatter plot. The idea behind this is to uncover relationships between
certain features. In the diagonal, histograms of the individual features show their value
distributions.

two features are only properly visible if the axes are next to each other. Moreover, recent
works have suggested that parallel coordinate plots are harder to interpret for many users
than scatter plots, especially if non-linear patterns are present in the data [KARC15].
The encompassing contextual information like patient and timestep id can be encoded
as separate axes, but can only be used to provide context information for neighboring
axes. Similarly to scatter plots, large numbers of observations can lead to visual clutter
that makes the plot hard to understand, as more and more polylines are drawn on top
of each other. To tackle this problem, methods were created that aggregate groups of
lines in clusters or highlight the density of lines [HW13, JFC14]. For the latter, simply
drawing the lines transparently can convey a notion of density. Further information
can, for example, be encoded in the line color [GKGR18]. Applying color in these plots
can allow users to more easily trace the values of certain points across dimensions and
see correlations or patterns concerning non-neighboring axes. In terms of interaction
brushing and linking are still often employed methods. For these kinds of plots users
can often draw along one axis and filter for polylines that fall exactly inside this value
range. This interaction method is an often needed necessity to comprehend large datasets
[HW13].
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Figure 4.18: The parallel coordinate plot (PCP) has a separate vertical axis for each
feature, including the shape difference values for all organs, as well as the patient and
timestep ids. For each observation the respective points on the axes are connected using
a line. Correlations are encoded by polyline patterns between neighboring axes.

Similar to a PCP, a glyph plot can encode higher dimensional data without too many
problems. For example, the use of star glyphs allows one to choose the number of
dimensions freely, although after a certain limit the distance between the features might
become too small and make the glyph harder to interpret. Glyphs are often visually
modified using color, blur, and added elements to encode further information [BKC+13].
In Figure 4.19 we see simple star glyphs. The preservation of the initial patient and
timestep context depends on how the glyphs are created. Producing a glyph for every
element in the cohort may create too much information to effectively display. The data
is often grouped based on certain problems, e.g. on a per-patient basis and only their
average properties are shown as a glyph. This creates a representation that is oriented
on providing an intuitive overview of the data, allowing for easy comparisons between
multiple cohort elements [KPB14]. A problem with this simplification is that it may hide
correlations present in the data, or between multiple glyphs. As the general shape of
this representation is the most prominent feature, the arrangement of the axes around
the center is very important. In terms of adding more elements and features, we run
into similar problems as with the scatter plot matrix and the parallel coordinate plot.
Adding more glyphs, reduces the effective size a single glyph can have and makes it hard
to interpret individual ones. Increasing the number of lines in a single glyph leads to
overlaps and also reduces its understandability [BKC+13]. Interaction-wise a user could
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Figure 4.19: In this star glyph plot each patient’s organ variability is encoded in the
length of the four lines protruding from the center of each star. The longer the lines are,
the more the respective organ varies. Starting from the top and going clock-wise the
encoded organs are bladder, rectum, prostate, and CTV.

either select or hover over a glyph for more detailed information, but also rearrange the
axes in a different way to change the shape of the glyph.

The fourth and final option we look at are tabular plots, shown in Figure 4.20. Generally,
these plots struggle, the more dimensions are added, however recent works have suggested
that his problem can be circumvented by creating a representation that treats each
dimension as a column and therefore allows for a more easy extendability. Individual
observations are in this view grouped based on one property, meaning that it can either
preserve patient or timestep contextual information, but not both [BBS+18]. However,
one could only view the values of a single organ or dimension and use the patient and
timestep values as the axes. Most commonly a simple color-coding is chosen to show
the average value of each cell. There also exists the option to use overlays, blurring,
and other options to encode further information [RCG+17]. One of the biggest benefits
of this view is that tables are commonly known to most users and one can build upon
this understanding. Effectively detecting patterns and correlations across and between
dimensions requires sorting. By ordering the values of one dimension other dimensions
might also reveal an underlying pattern depending on the former. Generally, this approach
suffers from adding more observations as each of them would introduce a new line, leading
to quadratic growth. To combat this, observations are often aggregated based on certain
properties to only create a small number of subgroups [EF09]. This could lead to a
loss of details and tools need to provided to analyze these groups, based, for example,
on their inner group variance, as an indicator for how homogeneous a group is. The
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Figure 4.20: In the tabular plots the individual shape difference values are either
aggregated based on patient or timestep ids. The average values are encoded as the
cell color (low high). Correlations are seen in increasing or decreasing
gradients.

detail-on-demand interaction methods used for the other visualizations can also be used
in this one because most of the tabular views correlation recognition depends on the
way elements are aggregated and sorted. Interaction tools to change the sorting are also
required [FGS+17].

Each of the shown methods has its benefits. One of the most important abilities for us
was to show the shape change information while at the same time preserving contextual
information, like patient and timestep id. Additionally, we wanted to ensure that the
visualization itself is readily understandable by users who do not work with visual
analytics tools on a regular basis. Therefore we decided to employ a modified tabular
view as the main overview tool of our visualization. Instead of providing separate axes
for all dimensions and aggregating the observations based on either timestep or patient
id, we show both of these values along the axes and highlight the values on a per-organ
basis in the grid cells. Depending on if the encoded value represents a distance or a
group identifier, we use different colormaps. For the former, we use a sequential white to
orange map, indicating small and large distances, and for the latter, we use a qualitative
colormap with a pastel color scheme. Both of these maps were taken from Colorbrewer
[HB03]. Through this representation the user should be able to compare values across
timesteps and patients. To extend this approach to multiple organs, we split each cell
into equally sized parts, one for each organ to be shown. The idea behind this being
that this should enable users to directly compare values of multiple organs and detect
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certain patterns and correlations, similar to a glyph-based representation. To make
differentiation easier between multiple timesteps and organs, the table cells/timesteps are
represented by rounded cells. The user can manually filter, which organs are shown at
any given time, enabling to only show the information he is interested in. A screenshot of
our solution is shown in Figure 4.21. We decided to use a color-based encoding to show
the value of a feature, as we believe that this allows for precise comparisons between
non-neighboring elements. At the same time, it preserves the intuitive recognizability of
similar elements in the cohort. Compared to a parallel coordinate plot, we think that the
resulting representation is more easily understandable by new users. Although we can
only encode a limited number of dimensions, we still consider encoding up to four organs
at a time to be sufficient. To ensure that the method scales well with more patients,
we also use aggregation on a per-patient and timestep level. This possibility is also the
reason why we chose this method over scatter plot matrices.

4.2.2 Zoom and Filter

The initial layout of the overview visualization provides users with the option to see the
whole cohort at once in such a way that the amount of shape change or the shape type
directly encoded for every single combination of timestep and patient. To analyze the
data the user would be required to manually scan row-by-row to either detect patients
that look similar or to find patients with certain outliers. Doing this even for a relatively
small cohort requires looking at large numbers of elements, like in our case where 24
patients each having 13 timesteps lead to a total number of 312 elements per organ.
Finding patterns in such a cohort gets increasingly more difficult with every added patient.
Therefore, we aim at finding techniques that allow users to drill down from a general level
to a more and more precise one until he has gathered sufficient information and can even
perform a more detailed shape analysis as a next step. To preserve the usability of our
visualization for larger cohorts, we review several interaction methods and visualization
techniques commonly used to allow us to make the cohort dataset easier to analyze in
both the patient and timestep dimension.

One of the most common methods in this area is the use of filtering, which allows the
user to remove uninteresting elements from the data, based on certain selection criteria,
e.g. only showing patients without missing values. Instead of removing elements, sorting
simply orders all elements based on their average value in one or more dimensions in
an ascending or descending manner [BBS+18]. A method closely related to sorting is
grouping, while the former, orders elements based on their similarity, the latter goes a
step further and tries to create distinct groups of elements with similar properties. One
way of doing this could include defining bins based on certain intervals inside the data
and assigning elements to these groups based on their value [FGS+17].

We have several goals that we want to achieve employing these methods. Initially, it
is important to know to what extent the method can be used to reduce the amount of
visual information displayed. Related to this, it is also important to know how the chosen
approach affects the capabilities of users to detect underlying patterns as well as outliers.
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(a) One Organ (Bladder)

(b) Two Organs (Bladder and Rectum)

Figure 4.21: Screenshots of the tabular layout used in our tool to represent the similarity
of each organ shape to the mean shape of each individual patient. The average shape
difference values are encoded by the cell color (low high).
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We mostly work with numerical values, but the chosen approach should also extend to
other types of data, for example, categorical cluster ids. Since users only have little prior
experience with visual analytics tools, the required amount of interaction should be low.

Filtering is probably the most straightforward way to reduce the number of elements
visually displayed. By allowing arbitrarily broad or narrow queries, filtering can allow the
users to specifically focus their analysis on a chosen subpart of the overall cohort, enabling
them to look at smaller patterns that would otherwise be lost in the complete dataset.
Hiding large portions of the data can also lead to a loss of contextual information,
e.g. providing information about the general prominence of certain patterns in the
complete data [Kei02]. Filtering itself can be used with arbitrary data types, ranging
from numerical, over categorical, even to textual data. The interaction needed by the user
largely depends on how complex the queries are which the system allows to create. Simple
brushing tools only require a few clicks [MW95]. More complex query systems can require
textual input using regular expressions. A simple example is shown in Figure 4.22b.

Sorting is one of the most common methods of analyzing tabular data. Although it does
not offer any reduction of the presented visual information, its rearrangement of the data
elements can allow users to identify several parts of interest, e.g. elements with especially
high or low values indicating outliers. This method does not help with increasing the
focus on small parts of the data, as much as filtering would, but preserves the contextual
information of all other data elements. This can allow the user to detect patterns across
elements, like correlations between multiple columns [BBS+18]. Figure 4.22c shows the
effects of sorting on a simple example. As sorting only defined for numerical and ordinal
values, other data types require some kind of mapping function that defines if a certain
value is bigger or smaller than another one. In terms of needed user input, sorting can
simply be done for single dimensions by selecting a table column. One could also create
more complex sorting versions where multiple dimensions are used one after the other,
requiring more user input, to define the order [FGS+17]. These more complex interaction
methods may not be optimal for non-visualization experts.

Lastly, grouping is a prerequisite to visual aggregation where groups of elements are
combined into a single representative, allowing for large reductions of visual elements
[YKSJ08], as shown in Figure 4.22d. Contrastingly to filtering, the aim of creating these
group representations is to provide contextual information about the elements removed
from the view. The creation of groups based on certain properties can allow users to
gain a quick overview of general patterns in the data and perform further inspections
based on them. Moreover, this can be used to build semantic groups inside the data
and compare them to see where they differ, e.g. patients with and without bladder
toxicity [GAHGGPT15]. Depending on the chosen visual encoding, a problem with
aggregated representations could be that they can hide outlier values. The significance of
the aggregated value largely depends on how dispersed its internal values are [BBS+18].
Groups can be created for arbitrary data types, either by simple queries, by creating
bins for numerical values or even based on clustering algorithms. Similarly to histogram
creation, the number of groups can largely affect the final result. Grouping can be done in
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Figure 4.22: Examples of the three different techniques presented to explore the tabular
data containing numerical elements.
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Figure 4.23: Example illustrating why the use of the mean on categorical or ordinal data
leads to false results. If, for example, the categorical elements are saved as numbers
A = 1, B = 2 and C = 3, which they commonly are, using the mean can lead to false
results where the aggregated value depicts something that is not present in the data.
In this case the use of the mode, which returns the most common value, is much more
indicative of the contained elements.

several different ways, similar to sorting, it can be done on multiple levels. This process
requires interaction to select the organs on whose basis the data is grouped.

Two of these three methods found application in our tool: sorting and grouping. Sorting
is used to order patients based on their use for finding patterns in large tabular represen-
tations as shown in the work of Furmanova et al. [FGS+17], for example. Users can select
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the organ on which the table is sorted and the average shape change is then estimated
and used to determine the final order. Missing values are arranged so that they are in
front of the smallest ones, at the start of the table. For the aggregation of the categorical
cluster ids we use the mode, which returns us the most prominent shape type in a group.
An example showcasing why the mode should be used instead of the mean can be seen
in Figure 4.23. All of this allows the user to see precisely, which patients in the whole
cohort undergo large and which only small shape changes. It also enables the user to
find organs with similar shape change behaviors. Grouping is employed in two different
ways, for both the timesteps and the patients. As mentioned in Section 2.6, the first five
timesteps of each patient are taken at consecutive treatment days during the first week,
the rest is taken on a weekly basis. One assumption is that the differences measured in
the first five days are an indicator of the overall patient variability. Using this knowledge,
we aggregate the 13 table cells for each patient by grouping timesteps 1 − 5 and 6 − 13.
The patients themselves are grouped based on their average shape variation values for a
single organ or their assigned shape type. If the average variation is used, four different
groups are automatically generated, i.e. one for missing, low < 25%, medium 25% − 75%
and high > 75% average values, based on the interquartile range. The assignment is
based on the value range of the respective dimension, with our goal being to enable the
user to view only a number of groups, which represent the most common patterns in
the data, without the need to manually specify the bin sizes. Each group can also be
extended and collapsed to only show the subset of the patients that the user is interested
in analyzing. We show the effects of these two methods in Figure 4.24.

Provided that the user was able to analyze the whole cohort using the previous steps,
a more detailed exploration might be necessary to both gain additional insights or put
previously found patterns into context. Up to know we only analyzed the average
similarity values and cluster ids of groups. A next step would be to perform a more
in-depth analysis of the groups themselves, to understand their overall aggregation quality,
e.g. their value distribution and amount of missing data, as both of these indicate how
much the shown average value can be trusted. Going one step further, the user might
also be interested in finding out what part of the organ is the one that leads to large
shape variations, or how different shape group types compare to each other. All of these
detailed inspection methods work in different ways, which we will discuss in the following.

4.2.3 Distribution on Demand

Further analytical processes of the groups could include analyzing how representative
a certain shape type is for the current group, or if the shape deviation behavior inside
a group is homogeneous or largely varying. Both of which indicate the aggregation
quality. Our ability to judge the intragroup distribution is largely dependent on the
chosen encoding of the aggregate value. Currently, we employ two aggregation strategies,
i.e. the grouping of similar patient rows and combining timesteps into two groups, both
of which need to be presented in a way that the user can understand them.
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4.2. Cohort Visualization

(a) Patient Grouping - For every group a row similar to the patient
rows is generated, i.e. it contains as many timesteps as the individual
patients. The values of the group rows are estimated using the mean of
the contained patients. This is shown for both one and two organs.

Figure 4.24: Screenshots of the sorted and grouped cohort data.

Distribution Representation

We looked in a first step into different ways that were used in previous works to provide
users with a notion of the underlying data distribution. To ensure that our choice of
encoding supports the users as good as possible with the tasks at hand we analyze
three different ways to estimate the variability of groups: distribution plots, dispersion
measures, and statistical tests.

There are many different visualization approaches to render distributed elements. The
general idea is to find a representation which is able to render the aggregated elements in
such a way that a user can see how spread out they are across an interval. Contrastingly,
dispersions measures do not draw the initial data points but instead derive statistical
characteristics from them that try to describe the values inside a group, like the standard
deviation, or certain quantiles. Statistical tests go even a step further and do not only
estimate characteristics, but also evaluate the significance of their findings. ANOVA, for
example, evaluates the quality of a grouping based on the differences in overall variance
and group variance [RFGD08].

Nearly all of the mentioned methods have some mathematical requirements that need to
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(b) Timestep Grouping - The first five timesteps and the remaining
ones are also aggregatable into two groups. The resulting values are
also the mean of the contained timesteps for each patient. The size of
the extent of the grouped cells is kept the same as the original ones, to
preserve the visual context. This is shown for both one and two organs.

Figure 4.24: Screenshots of the sorted and grouped cohort data (continued).

be fulfilled, therefore understanding these allows us to determine if they are appropriate
for the use in our tool. This also extends to the data types these methods are applicable to,
as we ideally want to apply the methods to numerical and categorical values. Furthermore,
understanding of the output is needed to determine ways to visualize them but also to
know if they can provide us with knowledge about the overall distribution shape and
even compare it to other elements across the cohort.

Distribution plots, such as box plots shown in Figure 4.25, do not have large restrictions
made to the inherent distribution of the data points, as their main goal is to provide an
independent representation [WPK89]. Their output often depends not only on the input
data but also on parameters that are chosen beforehand, e.g. the kernel size for violin
plots, meaning that the same data points can result in differently looking distributions.
Concerning the input data types themselves, there exist approaches that are able to
handle everything from numerical data up to categorical data. A benefit of distribution
plots is that they preserve the underlying data structure and can allow users to judge the
number of elements contained [HN98]. While these plots are well suited for comparing a
few groups, they do not scale well for more elements with smaller screen space, as they
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Figure 4.25: Distribution plots highlighting the deviation of each cohort element to the
mean shape of the patient.

still require complex plotted data representations.

Rectum Bladder Prostate CTV
Mean µ 480.63 764.32 567.41 822.07
SD σ 335.79 421.08 424.40 662.90
Min 22.79 149.72 33.96 19.85
Max 2149.20 2492.10 2441.70 3519.60

Table 4.1: Distribution characteristics describing the aggregated shape differences for
each organ measured in their respective shape spaces.

The estimation of dispersion measures like the standard deviation or the interquantile
distance [Man11], reduces arbitrarily large collections of data points to a few numbers.
The descriptiveness of these figures, largely depends on the properties of the underlying
distribution. For example, the ideal use case of the standard deviation σ would be the
description of a normal distribution, because its value would describe the percent of
elements contained: µ ± 2σ = 95% [RFGD08]. These statistical dispersion measures
are also only defined for numerical values. Some works suggest that the extension to
categorical values could be made by measuring the number of values differing from the
mode [SZ12]. As mentioned before, the output of the calculations only contains a few
values, that could, for example, be visualized using color coding or glyphs. They do not
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4. Visualization Design

offer detailed knowledge about the shape of the underlying distribution. Instead they
can provide a rough estimation of it. This enables the user to more easily compare larger
numbers of aggregated elements to each other, as only these measures are inspected. An
example of a couple of those figures is shown in Table 4.1.

Rectum Bladder Prostate CTV
KS-Test (Normal) 3 3 3 7

p-Value 0.12 0.20 0.19 0.04
KS-Test (Uniform) 7 7 7 7

p-Value 0.00 0.00 0.00 0.00

Table 4.2: Results of statistical tests performed on the shape difference values. Hereby
we tested if the data for each organ is normally or uniformly distributed. We found slight
indications that the data follows a normal distribution.

Lastly, when looking at the use of statistical tests we see that they also come with
several different underlying requirements that need to be checked before they can be used,
to ensure that the test result is valid. This could include checking if the data is normally
distributed using the Kolmogorov-Smirnov test [Lil67] or if the variance is homogeneous
in groups of independent samples using the Levene test [BF74]. Furthermore, the
user needs to define beforehand a threshold at which a pattern in the distribution is
considered significant. After its application, the result is a single value that determines
if a statistically significant effect exists or not. This value does not encode the actual
magnitude of the distribution or the number of elements in any way. It can, nevertheless,
be used to detect significant patterns across the whole cohort. Table 4.2 encodes the
exemplary results of two distribution tests on our shape difference data.

We perform two separate aggregation steps in our tool, once across time to group the
first five days of treatment and the rest, and once to group patients with similar shape
variations or types. As the former only aggregates between 5 and 8 individual sample
points for a single patient, we decided that using a simple dispersion measure like the
standard deviation to show the average deviation from the mean is enough to provide
information about the distribution, as the number of elements is constant. The opposite
can be said about the aggregation of patients in groups. While the average values are
already encoded in the grid cells, users are more interested in understanding the number of
elements contained in every single group, which is why we chose to employ a distribution
plot. The goal is to convey if a certain group is common or only represents an extreme
case.

Patient Distribution Visualization

Visualizing the distribution of values for a group of patients, we want to offer insights
into the overall spread of values, allowing the user to understand which groups contain
most of the data and which can be considered as outliers. Being able to reflect upon
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4.2. Cohort Visualization

the previous aggregation results, is, therefore, a task that we need to support, as we
mentioned before, distribution plots can allow us to achieve just that. As with most
visualization problems, there are multiple solutions one could use to tackle this problem.
For this part of the work we look into box plots, histograms, violin plots, and scatter
plots.

Box plots are one of the more common distribution visualization approaches and are
created by measuring the median, as well as the quantiles to split the data into four
equally sized portions. Histograms are bar charts that are created if the data is binned
into groups and the number of elements in each group is counted and drawn as one bar
[RFGD08]. Violin plots are created by using kernel density estimation, where at each
point of the data a filter kernel is placed and summed up to create a final distribution
of the overall density [HN98]. Scatter plot based approaches simply plot a dot for each
data point. Although they are normally only used for 2D data, they can also be applied
for 1D data [HTA+18].

We evaluate these approaches based on how well they can convey the overall data
distribution, for example, how easy it is for a user to identify the region with most
elements. This also extends to the ability of the approach to allow for the identification
of outliers inside groups. We also look at normally contrasting features: precision and
intuitiveness. The former feature describes the ability of the chosen method to allow the
user to precisely estimate important key properties, like the center of all data points.
The latter feature focuses more on how understandable the plot is for users who have
not worked with this kind of representation before. Finally, we also want to look at the
computational requirements, as well as the scalability of the approach for large amounts
of data.

The interquantile regions shown in a boxplot, in combination with the median, encodes
the range where 50% of the data are present, it’s size shows how spread out the data is,
e.g. a small box indicates a large group of points. The whiskers extending from the box
indicate the distribution of most of the remaining data [WPK89]. This plot is shown in
Figure 4.25. Most box plots also explicitly encode outliers, as points outside the whisker
range. As this plot is based on statistical characteristics, it allows for precise analysis
of these properties. Certain works suggest that this kind of plot often simplifies the
underlying data too much, as many differently distributed sets of points can result in
the same boxplot [MF17]. New users also need to have a certain knowledge of statistics,
as well as an explanation of the general encoding to be able to correctly interpret this
kind of representation. The computation of the plot requires an additional sorting step
of the data, before the characteristics necessary for the plot can be calculated, which can
take some time for large arrays [RFGD08]. The final plot is mostly independent of the
number of elements, except for the drawn outliers.

Histograms are a bit more flexible in terms of showing the distribution of the underlying
data. While box plots only highlight the region with most elements, histograms can show
more complex distributions that might even have multiple regions with large numbers of
elements, as seen in Figure 4.26. The number of bins largely impacts the precision of the
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Figure 4.26: Histograms showing the distribution of the shape difference values inside
the cohort on a per-organ basis. The x-axis shows the value range and the y-axis the
number of element that fall into each of the bins. The higher the bar the more elements
have a certain value.
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Figure 4.27: Violin plots showing the distribution of the shape difference values inside
the cohort on a per-organ basis. The gray box in the center is a simplified box plot,
including elements like the median, quantiles, and whiskers. The colored lobes around
the box plot indicate the individual value distributions.

resulting plot [LM17]. Outliers can also be identified if certain parts of the histogram,
contrast with the overall distribution, which might be a hint to create another group
from these data points. Histograms precisely encode the number of elements contained
in each region, allowing users to properly judge their occurrences. They do not offer any
other statistical information, like the mean value, which can only be visually estimated.
As bar charts are a common representation form in many tools, most users are familiar
with and can directly interpret them. Choosing the ideal bin size offers some challenges.
The calculation process itself is simply done by iterating over the data and adding the
elements to the appropriate bins. The number of bars is only influenced by the number of
bins defined and not by the aggregated elements. Furthermore, the plot can be visually
reduced in size while still being understandable.

Violin plots contain all the information provided by a box plot, but also add a more
detailed representation of the underlying distribution of data points in the form of a
density plot. This allows users to not only judge where the largest amount of data is
located but also to determine if there are several similarly big regions in the group [HN98].
Figure 4.27 shows examples of such plots. Outliers are not explicitly encoded in this
kind of plot, they are connected to the main body of the created density plot. This may
look for some users as if there where more values in-between than there actually are
[HTA+18]. Regarding the precision with which statistical attributes can be explored, the
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Figure 4.28: Scatter plot showing the distribution of the shape difference values inside
the cohort on a per-organ basis. The actual values along the y-axis are plotted together
with small random noise across the x-axis for each organ. The latter is necessary to
prevent the points from overlapping too much and has no physical meaning.

violin plot contains a box plot and is, therefore, able to also precisely show the median
and interquantile ranges. This also means that, similar to the box plot, a user needs an
initial explanation, as to what all the parts of the plot mean, especially since violin plots
are not that common [APW+18]. The application of a filter kernel at each data point is
computationally quite expensive, which can lead to problems for large datasets. Many
recent works look therefore into options for optimization and parallelization. The visual
result of this process is independent of the underlying counting of elements.

Scatter plots and their related form i.e. beeswarm plots, encode the distribution
of elements by plotting them directly, as seen in Figure 4.28. To avoid overlap for
one-dimensional distributions they use strategies like random offsets in the orthogonal
direction, or placing elements on the same height in a line [HTA+18]. This enables users
to precisely see how many elements are at any given position in the range, allowing them
not only to see regions where points are condensed but also to spot outliers. Precisely
estimating the average value and other factors is not possible in this representation
and can only be roughly derived from visual interpretation. Different from the other
representation forms, this one does not assume prior knowledge, providing broader
accessibility for new users [APW+18]. As there are no large underlying calculation
processes involved, apart from standardizing the point range to fit into the drawn region,
the data can be directly drawn. This results in a plot where the amount of drawn
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information depends on the number of elements. While this may work well for relatively
small cohorts, more elements may lead to more overdraw or a lack of space for all the
points to be drawn, generally reducing the understandability of the plot.

Based on this information, we decided to employ a histogram plot to encode the distribu-
tion of patients across the created classes. The reason for this was that this representation
is able to precisely encode the number of patients in each group, giving direct knowledge
about their individual prominence, while at the same time being a visualization that is
known to most people. Its downside of relying on the appropriate bin size definition is
not problematic in our case as the bin sizes are already predefined for each individual
group and do not need to be modified as the group thresholds are currently predefined.
If future extensions allow for a more flexible grouping, this representation could also be
adapted to present the underlying distribution in more detail. We place the resulting
histogram bars next to the corresponding labels for each row, resulting in a vertical
bar chart. The space available for the bars is predefined and the individual bar heights
are normalized. This ensures that the complete space would only be filled with a bar
containing all elements. We also think that this representation scales better for smaller
screen sizes as it only relies on the amount of space covered by the individual bars and
not on intricate details. As the bars are also separate visual elements they can easily
move with their corresponding labels if groups are collapsed and extended. All in all,
we think that the simple histogram representation provides us with the most important
information, in an easily understandable way, with manageable trade-offs. In Figure 4.29
we show a screenshot of this visualization in our tool.

Shape Similarity Distribution Visualization

After solving the problem of visually encoding the value distribution of the aggregated
groups in general, we also need to look at the aggregated shape variance cell in our tabular
representation. As we previously deemed the calculation of the standard deviation as a
dispersion measure to be the best indicator for the inner group variations, we now need to
find a way to integrate this measure on a per-cell level. Up to now, we visually encode the
shape difference between the mean shape of a patient and its current timestep for each
cell using color-coding. This current approach is commonly referred to as a glyph, where
some measure, in our case the distance value, is represented by a visually differentiable
proxy. Further extensions have to keep this in mind and need to be integrated in a
way that they provide additional information, without tampering with the previously
presented one. Taking inspiration from Borgo et al. [BKC+13], we found four possible
methods to encode the standard deviation and add it to our tabular view: size, texture,
color, and blur [Mac86].

Size encoding was used to reduce the scale of the table cells based on their standard
deviation, to have cells with low variance, i.e. high trustworthiness, appear at their full
cell size and those with high standard deviation, i.e. low trustworthiness, respectively
smaller [Mac86]. Another option we looked into was overlaying the cell with a textured
pattern that conceals more and more of the cell the larger its dispersion is. The use
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(a) Rectum

(b) CTV

Figure 4.29: Screenshots of the sorted and grouped cohort data. The images show two
different distribution histograms for the groups, created on the basis of the average
distribution of the specified organ. The black bar represents patients with missing CTV,
the details of this encoding are discusses in Section 4.2.4.

86



4.2. Cohort Visualization

Figure 4.30: Table showing both the average shape difference values, as well as standard
deviation. The latter one is encoded as the size of the individual cells, with larger cells
representing low standard deviation, i.e. high trustworthiness.

of color is similar to its previous application for encoding the shape difference, in that
it simply employs a one-directional colormap to encode the deviation of the contained
elements [RCG+17]. Finally, we also looked at the option of blurring each cell based on
the standard deviation, so that the more the value grew, the more blurry the final cell
would get [Mac92].

Each of these visual representations has different perceptual effects on the user, therefore
we evaluate their applicability based on the following questions. First and foremost
the approach needs to be able to properly encode a numerical value like the standard
deviation, i.e. it should allow users to properly judge the scale of dispersion for individual
cells. An extension from simply being able to know if a cell has a higher or lower inner
group variation than another one would be the ability to tell the precise difference between
to cells. As we generally aim at highlighting groups with low standard deviation, because
their average value is more representative of the contained patients. Therefore, the used
encoding has to draw attention to these elements. Furthermore, can the user selectively
focus on elements of a certain value and detect them across the cohort, this property
is also called selectiveness. Finally, the chosen approach should ideally be combinable
with the shape difference encoding one to create a combined glyph. Ideally this should
show both the average shape difference and standard deviation for an aggregated group,
without creating unwanted side-effects.

Starting off with the use of size reduction to show higher variations, we can see that the
property is one of the more common ones to encode numerical values as one can simply
map the span between the maximal and minimal standard deviation value to the cell area.
We show this encoding in Figure 4.30. To be able to interpret the difference between
two elements, one must consider that scaling the side lengths of the table cell influences
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Figure 4.31: Table showing both the average shape difference values, as well as standard
deviation. The latter one is encoded as the texture of the individual cells, where cells
with smaller dots represent low standard deviation, i.e. high trustworthiness.

the size of the result in a quadratic way. By keeping this property in mind we can allow
the user to estimate the difference in dispersion [BKC+13]. Differently sized elements
also have a perceptual imbalance, leading to larger elements gaining more attention than
smaller ones. As works have shown, the user can also explicitly focus on a certain size
of the element and search for these elements rather quickly. Combining this encoding
with the already in use color channel would generally work. Furthermore, it has been
shown that using both size and color works well if they are independent variables and
the user only focuses on one of them at a time [RCG+17], which they are in our case.
These effects for independent variables have been shown for choropleth maps, but they
may not work if the color-coded cell itself is changed in size.

Textured patterns can be seen as a combination of a base color overlayed with a pattern
of changeable density. In our case, the underlying color can be used for the initial shape
difference value and the density of the texture, i.e. the amount of overlap, can be mapped
to the value of standard deviation for the group, as seen in Figure 4.31. Generally, there
exists no direct mathematical relationship between the mapped value and the resulting
pattern density, which means while the user can tell that one element has a higher value
than another one the concrete difference is not easily quantifiable [War12]. Due to us
being quite adept in scanning for patterns, we are certainly able to detect similar elements
in large collections. As these two encodings use different channels they can be applied to
the same glyph or in our case table cell simultaneously, however, there might be some
negative interference effects [HSIHP06]. For large standard deviation values, the pattern
generally grows rather dense and it may alter the visual perception of the color-coded
shape difference, e.g. a black dot pattern may lead to a darker perceived color of the cell
and a wrongly interpreted shape difference value.
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Figure 4.32: Table showing only the standard deviation. Hereby a different colormap is
used to separate it from the shape difference encoding (low standard deviation - high
trustworthiness hight standard deviation - low trustworthiness).

Color coding can come in many different forms depending on if hue, value, or saturation
are varied. For our case, we will focus on sequential colormaps from Colorbrewer [HB03],
which mainly vary in value, which is visible in Figure 4.32. To effectively encode the
standard deviation, the chosen colormap must be perceptually linear, which is not the
same as being linear in the space of the colors. The provided colormaps are already
linearized beforehand and can be directly used with the normalized standard deviation.
Modifying the color value results in representations which can be ordered based on
their appearance, e.g. from light to dark. Still, their concrete value cannot be directly
quantified by looking solely at them, which means that they are commonly combined
with an explanatory colorbar [RCG+17]. Similar to size encoding, where larger elements
are perceived more dominantly, in this encoding the bright colors appear more strongly,
probably due to the black background. Still, users can selectively focus on elements of a
specific value and search for them across the cohort. As we already use the color channel
of the table cells for the encoding of shape differences, we cannot apply another coloring
to the cells at the same time to show the standard deviation.

We can use fuzziness to blur the cells of the table in accordance with the amount of
standard deviation in the group, such as in Figure 4.33. This effect is created by applying
a Gauss filter to the elements. Increasing the standard deviation of the filter kernel
increases the fuzziness of the result. A linear increase of the standard deviation does
not lead to a linear increase of the blurring effect, requiring more complex mapping
procedures. This encoding allows users to tell whether a group experiences variations.
Although, using this approach is not as easy as with the other methods to order elements
based on the amount of fuzziness [Kos01]. This also makes finding elements with similar
encoded values more difficult. Elements without any blurring generally stand out due to
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Figure 4.33: Table showing both the average shape difference values, as well as standard
deviation. The latter one is encoded as the blur of the individual cells, with sharper
cells representing low standard deviation, i.e. high trustworthiness.

Figure 4.34: Direct comparison of each analyzed encoding for the standard deviation
(minimal deviation: 0% and maximal deviation: 100%).

their sharp edges and can, therefore, be more readily identified [Mac92]. Combining this
approach with the previously existing color coding works well in theory, but can lead,
similar to the texture overlay, to a darkening of the perceived color if the blur value is
large, due to a merging of cell color and background color.

Considering the properties of the discussed methods, all of which are compared to each
other in Figure 4.34, we chose to use color-coding. Contrastingly to the other presented
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methods this approach allows the user to precisely judge the actual amount of standard
deviation for each aggregated value, albeit with the use of a colorbar. Because this
encoding uses the same visual channel as the aggregated shape differences, we have several
benefits, but also disadvantages. As both types of encoding are similar, the user can
directly employ its previously obtained knowledge to this one, e.g. while dark elements in
the former representation stood for shape outliers, they stand in the new view for groups
with high dispersion. A slight problem with this method is that both color encodings
cannot be shown at the same time. Therefore, we give the user the option to manually
switch between drawing the average shape difference values or the standard deviation
values for aggregated groups. Atomic elements, e.g. single timesteps of a patient always
show the shape difference values, as these elements are not created through aggregation.
To help users differentiate between elements showing average values and those showing
standard deviation values, we use different sequential colormaps. The former goes from
white to blue while the newly introduced one goes from white to orange. This pair of
colormaps was selected because it is also differentiable for people with colorblindness. We
think that the biggest benefit of the separate representation of both values is that they
do not interfere with each other to create distorted versions, as would texture patterns
or fuzziness. We also think that this method can accurately represent linear increases
in values as shown in Figure 4.34. In regards to the use of the table cell area as a
dispersion encoding, we decided against it, because the cells themselves already appear
rather small, especially if the individual timesteps are shown. Scaling them would make
it unnecessarily difficult to interpret the values of the cells. All in all, we think that the
chosen encoding, depicted in Figure 4.35, allows users to focus on either to analyze the
overall shape differences or the standard deviation, i.e the reliability of the average value.

4.2.4 Missing Data on Demand

Another quality measure, which may affect the resulting group values, is the amount
of missing data. The average value is only computed based on the items, which have a
difference value for a specific organ. A large group where only a small portion has the
difference values for an organ, would overstate the prominence of these values. Missing
data occurs in the used shape cohort solely in the form of missing organ segmentations
for individual patients, e.g. one patient might have a segmented prostate and no CTV,
or the other way around.

Contrastingly to the distribution visualization, where we discussed the different approaches
to represent distributions, we can skip such an analysis for the missing data, because
the answer is, in this case, more readily available: Individual patients either have the
organ data or do not have it and groups of patients have a certain percentage of patients
with or without the organ data. Therefore we have to analyze not how to estimate the
missing data, but instead, we can directly discuss how we visualize these cases.

For the encoding of missing data information, we considered both the unused visual
presentations of Section 4.2.3, such as texture and size, but we also considered other
encodings symbolizing emptiness or missing parts. The emptiness metaphor-based
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(a) Patient Grouping

Figure 4.35: Screenshots of the encoded disparity (increasing standard deviation
values ) for the aggregated values (increasing difference values

).

encoding is derived from the work of Blumenschein et al. [BBS+18]. In their work, they
used two different overlay glyphs, first a random spot noise which grows in intensity the
more data is missing, and secondly a triangular glyph increasingly covering the tabular
cells.

We analyzed the perception of the encodings. Similar to before we want to know precisely
how many elements are missing, without actually showing the numbers. Ideally, one
could combine the chosen encoding with the previous encodings for shape similarity and
shape similarity distribution. If possible the encoding should highlight elements with
high data quality, i.e. with only a few or no missing values. In terms of scalability, the
approach should work with the split cells for multiple organs and the aggregations we
perform on timesteps.

Using random spot noise is quite similar to texture overlays. The concrete estimation
of the underlying number of missing values is not easily doable, as this approach focuses
on conveying the notion that data is missing. One can create a spot noise that covers
a certain part of the table cell. The visual perception of this method is not linear
and requires complex mappings to achieve linearity. Combining this approach with the
previous color encodings might have the downside of altering the visual perception of the
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(b) Timestep Grouping

Figure 4.35: Screenshots of the encoded disparity (increasing standard deviation
values ) for the aggregated values (increasing difference values

) (continued).

table cell color, as it may appear darker due to the added spots. Regarding the extension
to multiple organs, the general amount of noise is quick to perceive and one can derive
the differences between neighboring organs rather well. Comparing over longer distances
may be harder in this representation [RCG+17].

The usability of shape overlays, like the triangular glyph shown by Blumenschein et
al. [BBS+18], largely depends on how the shape scales with increased values. In the used
example the glyph scales linearly along the diagonal of the cell. Because the glyph has
the same color as the background it appears that some part of the cell is missing. If more
elements are missing in a group the cell gets covered more with the glyph. The problem
with this approach is that the covered area is visually outweighing the covered distance
along the diagonal, which makes this encoding more difficult to interpret [BKC+13]. This
approach generally combines rather well with the previous color encodings as it only
reduces the amount of shown color, but does make it appear darker, like the texture
patterns or fuzziness. One problem of this encoding is that its look largely depends on
the table cell it is supposed to occlude. For example, if the cell is split the glyph gets
drastically reduced in size and if the timesteps are aggregated the glyph is stretched due
to the cells being wider.
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Figure 4.36: Direct comparison of each analyzed encoding for the missing amount of data
(nothing is missing: 0% and everything is missing: 100%).

Considering these approaches, which are compared in Figure 4.36, we decided that none
of them completely fulfilled our requirements to have both a representation that scales
well and is precise in its interpretation. We, therefore, decided to take the glyph overlay
and modify it. Instead of covering the cell along the diagonal, we cover it along its
vertical axis. This creates a rectangle coverage glyph, which is also colored like the
background. More simply it can be though of a top-down bar chart. An example can be
seen in Figure 4.36. In contrast to the triangular glyph, the rectangle glyph does not
get too heavily distorted when table cells are split or aggregated. It still preserves the
metaphorical emptiness, as the cell seems like an emptying glass the more data is missing.
The benefit of this approach is that the users can easily determine how much of the data
is missing and allows them quantitative comparisons between elements. The glyph also
does not hide the color-coded values. Hereby cells with few missing values show more
color and are therefore more prominent. Lastly, by only scaling the glyph from top to
bottom we do not introduce heavy distortions and it even works well when comparing
multiple organs next to each other. If data is completely missing, only a border remains
to indicate the original cell, preventing holes in the tabular visualization. Figure 4.37
shows how we realized this part.

4.3 Shape Visualization

At the moment, we are able to analyze the extent of the overall shape changes over time
and the predominant types of organ shapes in the data. However, up to now, we only
looked at abstract values, like shape differences, and not at the actual shapes of the organs
involved. Although this allowed for an effective overall analysis, users are additionally
interested in understanding the concrete shapes of the involved organs. This task builds
directly upon the previous cohort visualization and can be interpreted as providing the
user with Shape Information on Demand. The main problem we tackle in this part
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(a) Patient Grouping

(b) Timestep Grouping

Figure 4.37: Screenshots of the encoded missing data for the aggregated values.
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involves finding appropriate representations to allow users to analyze both the overall
shape of the organs and their variations for groups of elements. Additionally, we also
want to provide the possibility to find the differences between several groups.

4.3.1 Statistical Analysis

Currently, the involved shapes are only present in the form of their dimensionality-reduced
points placed in a shape space constructed using Principal Competent Analysis. This
low dimensional form allowed for easier high-level comparisons, like the ones employed
during the cohort analysis in the previous section. The tabular view only allowed for an
overview of generally similar shapes, but does not allow for the analysis of the actual
shape differences. Through the use of Principal Component Analysis, we are not only
able to create a reduced representation of 3D volumes, but also reverse this process and
create volumes for arbitrary points in the shape space. Furthermore, recent works have
shown that data aggregation using statistical measures in the reduced space also results in
an appropriately aggregated shape in the reconstructed original space. For example, the
mean of the reduced points also results in an averaged shape when reconstructed. As we
aim at understanding not only the general shapes and variations found in larger groups of
patients, but also the positional variance of the involved organs, we need to decide what
measures are best suited for this analysis. We, therefore, look at the following measures of
descriptive statistics: mean, median, mode, standard deviation, and interquartile range.

The first three measures deal with finding the center of a distribution, although they
define it in different ways. For the estimation of the mean, we use its arithmetic definition,
which is calculated by adding up all points and dividing them by their count. If the data
was sorted, the median would represent the value, which would split the data into two
equally sized parts. Finally, the mode, on the other hand, looks for the value that appears
most of the time in the data. Instead of finding the center of the data the standard
deviation and interquartile range try to estimate the spread of the distribution. The
standard deviation is defined as the square root of the variance, which in turn is the mean
squared distance of all data points from their mean. The standard deviation depends
on the mean and the interquartile range is connected to the median. The median splits
the data at the 50% mark, the interquartile range takes the 25% and 75% marks and
estimates their distance.

Our decision, which of these measures should be used to visualize the shape changes of
patients and groups of patients, is based upon a few key factors. As we have seen previously
in the distribution plots of Section 4.2.3, the elements tend to align in a slightly skewed
normal distribution. The chosen measure needs to handle this circumstance. Furthermore,
an appropriate measure also needs to be resistant against a small number of outliers.
They should not undergo large changes if only a small number of values is changed. In
regards to the visualization we are mainly interested in presenting the users with both
the general shape or position, as well as a region indicating the upper and lower bounds
of the confidence interval. This interval is supposed to highlight the region in which 95%
of all shapes or center points are contained. We highlight the properties of the presented
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measures in two figures, Figure 4.38 shows the center measures and Figure 4.39 shows
the disparity measures.

The ideal use case for the arithmetic mean is its application on normally distributed
data, where it can precisely define the center of the data. Through the introduction
of a skew in the distribution, the actual peak of the data elements and the mean start
to diverge. Besides, the mean also tends to be strongly influenced by outliers. It can
be shown that by changing only a single value in the data the mean can be altered
arbitrarily. This also impacts its viability for calculating a good group representative,
as single outliers can heavily alter the mean and lead to values not present in the data.
Because the standard deviation largely depends on the value of the mean, it shares
most of the mentioned properties, like being most accurate when describing data, which
follows a normal distribution. The fulfillment of this requirement has the benefit of
allowing one to precisely select regions that contain a certain percentage of all elements
in the group. Visualizing this region would result in a confidence interval of the possible
variations inside a group.

The median, in contrast, is able to better handle skewed distributions and outliers than
the mean. The reason for this being that, while for the mean the change of one value is
enough to affect the result, this would not affect the median. In the case of the median
half of all values would need to be changed to affect the median. Implying that the
statistical figure is neither drastically impacted by a long tail in a distribution, nor by
only a few extreme outliers. The resulting median value of a group is guaranteed to
be taken from the data. These mathematical properties also extend to the use of the
interquartile range estimating the variations inside a group. The elements selected as
the upper and lower quartile are also elements inside the cohort. The region in between
them contains 50% of the overall data elements.

Usage of the mode leads to the most common value in the data, or in the case of a
distribution the highest peak. The mode is not always unique, when multiple elements
have an equal frequency, there would be multiple modes. Generally, the use of the mode
is only recommended for nominal and ordinal data. Its application to sampled data can
result in unexpected results, as it is often the case that all data points have slightly
different values and not one of them appears more often than the others. In these cases,
the mode would not be unique. One way to tackle this problem could be to discretize
the data by rounding, for example. For a group of values, the resulting aggregate would
either be a single element or a group of elements taken from the data.

Considering the presented facts, we decided against the use of the mode as it is generally
too unstable for our kind of data and instead decided to employ a combination of mean,
median and standard deviation. Starting with the analysis of shape variations, we decided
to use the median to extract a concrete element inside the shape space as a general
representation of the group. The reason for this is that we wanted a shape that is actually
present in the cohort and is not easily influenced by outliers. This is especially important
in cases where the bladder of a patient has a vastly different volume for only one treatment
instance. In regards to the analysis of the general shape variations a patient undergoes, we
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(b) Bladder - Patient 1

Figure 4.38: Examples of the distribution of the first principal component concerning the
bladder shapes, once for the complete cohort and once for the first patient. We compare
how descriptive the center measures mean median and mode are for each
of them. The median and mean are slightly apart for the skewed complete distribution.
This effect vanishes if we focus on individual patients.
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(b) Bladder - Patient 1

Figure 4.39: Examples of the distribution of the first principal component concerning the
bladder shapes, once for the complete cohort and once for the first patient. We compare
how descriptive the disparity measures standard deviation and interquartile
range are for each of them.
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Rectum Bladder Prostate CTV
Shape 95.83 100.00 100.00 91.67
Position 100.00 100.00 92.86 94.44

Table 4.3: Percentage of all shapes and positions that follow a normal distribution if
tested on a per-patient basis with a significance level of 5%.

want to include even these outliers, as they can give information about which directions
certain organs tend to grow if their volume changes. Effective usage of the standard
deviation requires the data to be normally distributed. Although the shape space data
as a whole does not follow this distribution, analyzing the distribution of the timesteps
on a per-patient basis, we see that nearly all of them are normally distributed to some
extent as seen in Table 4.3. Therefore we deem the use of mean and standard deviation
as appropriate for the analysis of organ shapes. This combined approach, incorporating
both the robust measure of the median as general shape representative and the standard
deviation to calculate the upper and lower boundaries of the confidence interval, was
already employed by previous works like the one of Ferstl et al. [FBW16, FKRW16]. The
application of their method to our case is visualized in Figure 4.40. In regards to the
analysis of the center point variations, which are supposed to indicate organ movement,
the values themselves are also normally distributed for each individual patient and we,
therefore, decided to use both mean and standard deviation to calculate the general center
point and the main variation directions for groups of organs. This also in accordance with
our registration method, where we also used the average center point for each patient to
align its organs before the analysis.

4.3.2 Shape Display

Our application requires both a general understanding of multiple complex organ shapes
in a scene, as well as a precise inspection of the overlaps and interactions between organs
and different patient shapes. Therefore we decided to use a combined 2D/3D display,
shown in Figure 4.41. We employ three slice-based contour views for each major axis
direction through our 3D space as well as a 3D overview representation. Each of these
views has the same size and they are arranged in a 2 × 2 raster. Hereby we also exploit
previous knowledge of medical experts who often use tools that employ similar views,
for things like MRI or CT data, where the volume is viewed in the sagittal, axial, and
coronal planes, respectively. The idea to employ contour plots is that they allow users
to properly judge distances and shapes at a given point in space. They lack any depth
perception, therefore we augment them using a 3D overview. In this 3D view, we not only
highlight the currently shown organ shapes, but also indicate the position of the slicing
planes determining the contours in the 2D views. The user can either zoom in on details
in the 2D views or move the slicing planes back and forth to scroll through the different
shapes. Simultaneously, the plane indicators are updated in the overview representation.
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(a) Bladder shape distribution across the first two principal components.
The bladder shapes of the first patient are highlighted.

(b) Each bladder shape of the thirteen timesteps from the first patient.

Figure 4.40: Example for statistical shape analysis based on the used bladder shape data.
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(c) Shape space positions of the first patient, with the used statistical
measures: median and standard deviation.

(d) Lower Confidence Shape (e) Upper Confidence Shape (f) Median Shape

Figure 4.40: Example for statistical shape analysis based on the used bladder shape data
(continued).
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Figure 4.41: Screenshot of the final combined 2D and 3D representations. Each of the
three 2D slices is based on the three medical planes (sagittal, axial, and coronal) and is
assigned a specific color. The current slice position is shown by the colored rectangles in
the 3D view.
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In addition to this overview representation, the 2D views containing contours of the
organ shapes are employed for further analysis of the distances and overlaps between
multiple organs in the cohort. This is in accordance to what is usually employed in
medical applications.

4.3.3 Overview Visualization for Shape Comparison

Having decided on the use of both 2D and 3D views to show the organ shapes, the next
step is to decide on what visual encoding strategy should be employed in the respective
views. For the 3D view, we have to find a way to provide users with a good overview
of the currently shown organs, keeping in mind that often the organs of not only a
single patient or group are analyzed, but instead multitudes of them are to be compared.
Due to our statistical analysis, we obtained information about the general shape as
well as its variations, in the form of the upper and lower confidence interval shapes. In
this view, we mainly want to provide users with an understanding of the general organ
placement and the respective margins between multiple organs. In addition, we aim at
highlighting regions where large shape variations are present. This should allow the user
to place the slicing planes of the linked 2D views in such a way that these regions of
interest can be inspected in detail in their respective views. All of these tasks should also
support the extension to not only one group but many. The involved challenges, be it the
comparison of the confidence interval to the general organ shape or the comparison of
multiple different organ shape types to one another, fall under the topic of comparative
visualization. We will, therefore, look at three common encoding types in this field,
juxtaposition, superposition, and explicit encoding and analyze them for our use.

Although we previously mentioned these comparative visualization types in Chapter 3,
we briefly repeat their main focus and how it applies concretely to the use of 3D organ
meshes. Juxtapositioning means placing the compared elements next to each other. In
our current case, this could include placing all organs of one group next to each other
or arranging median, upper, and lower confidence shapes side-by-side. Superpositioning
places all shown elements in the same space, meaning that, for example, the same organs
taken from multiple patients or groups are stacked in one place on top of each other.
Often transparency is employed to show the inner structures and shapes of the organs
and not only the outermost one. Finally, explicit encoding extracts the information we
are interested in and renders it directly. In our case, this could include the extent of
the shape variations at a given point on the surface of an organ. One way to encode
this would be to employ color coding. Generally, animation could also be considered
for our purposes. Yet, we deemed the estimation of the necessary intermediary steps as
computationally not feasible and did not consider it further in our evaluation.

We use several principal factors to evaluate each of the possible visual encodings. As
we aim at creating a 3D overview representation to support the other 2D views, the
chosen encoding needs to provide users quickly with the main information about scene
composition. To support the use of the slicing tool, how well does the selected encoding
support users in detecting regions of interest, e.g. ones with high surface shape variations
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Figure 4.42: Example of superpositioned bladder shapes. Each shape has a distinctive
color and is drawn transparently.

and hereby the precision of the process is of importance. Additionally, the encoding
should preserve the original shape positions in such a way that it is still linked with the
2D slice views. As the current display layout only leaves a quarter of the available space
for the 3D view, the encoding should also use the maximal amount of shown information.
The opposite is true for the involved interactions, where any approach should aim at
minimizing the amount necessary, due to us mainly aiming at providing a simple view,
that should not distract from the more detailed 2D views. Each of these properties needs
to be assessed in terms of their scalability for multiple organs and groups.

Placing multiple shapes on top of each other (superposition) in the same position, as
shown in Figure 4.42, can allow users to quickly asses their general shape and especially
size differences. Larger shapes tend to envelop and occlude smaller ones, which can be
an effective way to determine regions in which a certain shape is larger than another one.
Combined with transparency, users can also estimate the size and shape differences for
smaller shapes completely occluded. This has complex rendering requirements as it can
easily happen that an improper rendering order of transparent surfaces leads to artifacts.
Depending on the chosen rendering method, the order in which the organs are drawn
might also influence the result. Concrete shape difference estimations are not easily done
in this view and often suffer from low precision. This is getting even more complicated if
transparent structures in the background become visible through transparent surfaces. In
general, this representation can either center the shapes on a per-group or per-organ basis
depending on which of those two are compared. Both preserve the relative placement of
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Figure 4.43: Example of juxtapositioning, where the three bladder shapes are drawn next
to each other.

the involved shapes in such a way that the 2D slice views can be effectively employed
to explore the shapes in more detail. In terms of used screen space, this approach can
effectively render the organ shapes at their maximal possible size. To explore the view
effectively, the most basic 3D interactions, i.e. zooming and rotating should be sufficient
to gain an overview. Overall the approach works best if only a few of stacked elements
are compared to each other. The more elements are centered at a given point the harder
it gets to estimate differences between them.

Similar to the alignment used in the superposition encoding, the juxtaposition approach
can either arrange the shapes next to each other on a per-group or per-organ basis, the
former one is depicted in Figure 4.43. This placement provides users with a quick overview
conveying both the general number of elements as well as distinct shape types. This
type of comparison visually separates the compared elements, meaning that it may not
be ideal to understand the upper and lower variation shapes of a single group. It is
more focused on comparing multiple separate groups to each other. One problem of
this approach is that while it allows users to gain a quick overview of the general shape
variations, no precise shape comparison is possible. The comparison relies on the user’s
memory as he moves his gaze between the different elements. This encoding does not
preserve the initial space completely, as it moves the elements in the direction of the
viewing plane axes in such a way that they do not overlap. This also means that the
elements in the 2D views need to be adapted, otherwise elements at the same depth
would be moved apart and could not be directly compared in the 2D views anymore.
With every element placed in such a way that it does not overlap with any others, the
available screen-space becomes smaller and smaller the more elements are added. This
also has implications on the necessary interactions. Apart from zooming and rotating,
panning is needed if the user wants to focus his attention on one element.

Lastly, the explicit encoding shown in Figure 4.44 drastically reduces the number of
shapes displayed, compared to the other aforementioned methods. This reduction comes
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Figure 4.44: Example of explicit encoding, all the shapes are aggregated to a median and
the deviations are encoded in color (low variations high variations).

with the price of losing the concrete shape information. Only by close inspection of the
explicitly encoded extent of the shape variations can the user understand the present
shape differences. This may be too complex for a quick overview tool. The encoding
allows for a precise analysis of local shape variations. This, in turn, can support users to
quickly detect regions of interest for slicing planes in the 2D views. Because this method
uses no displacements and only visually aggregates the differences, the guiding slices can
still be used for both 3D and 2D views. As the estimated shape variation values only
encode the amount of deviation at any point, the actual number of aggregated shapes and
their respective shape variations is hidden. Similar to the superimposed view, the screen
space used for the displayed shape is as large as possible and the required interactions
are also kept at a rather basic level, including only zooming and rotating. One could also
add the option to change the shape, which serves as a basis for the difference calculation
and encoding, to better understand varying shape types. Overall this method’s visual
output is mainly independent of the number of input shapes and scales rather well in
this regard. This also comes with a loss of providing contextual information about the
actual shapes.

In the end, we decided to use both a superimposed 3D view and one explicitly encoding
the shape variation amount. We assume that in general, the analysis of organ shape
variations has the following steps. Firstly, multiple different groups are selected by either
clicking on a cell or a row label in the cohort visualization. Afterward, the median shape
and its variations are estimated. Each selection gets assigned a unique color from a
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(a) Overview ( Group 1, Group 2,
Group 3 )

(b) Detail (low variations high vari-
ations)

Figure 4.45: Screenshots of the employed 3D overview visualizations.

nominal coloring scheme taken from Colorbrewer [HB03]. The selected elements are
indicated in the cohort view by a colored border or label. After this step shape analysis
starts out with a general comparison. We, therefore, show the median shape of each
selected group superpositioned in the 3D view. Hereby each organ of the same group is
assigned the respective group color. The idea behind this arrangement is to present a
simple guide to the general location of the involved organs in the scene. The lighting in
the scene and the used surface material aims at highlighting the organ structure. We
also did not employ transparency, as this view is only supposed to provide information
about the general organ shape layout and the other 2D views should provide more
detailed information. Finally, we also included a detailed explicit encoding of the surface
variations, which is only visible if the user selects a single group, whose variations are to
be explored in detail. In this case, the median shapes of other groups are hidden and
the selected one’s surface color is used to encode the amount of surface variation found
using a sequential colormap based on the organ’s group color. With this view, we aim at
supporting users trying to find regions of interest in terms of shape changes for a selected
group. In Figure 4.45 we show how these methods are used in our tool.

4.3.4 Details-on-Demand Visualization for Shape Comparison

After providing users with an overview of the 3D structure of the involved organ shapes,
the final step in our intended shape analysis process is to provide them with a detailed
inspection of the shape type and especially the underlying shape variation extent. For
this, we already decided on employing three 2D views similar to the medical views
commonly used for volumetric data, showing the contours of the shapes present at a
given time. Our goals in regards to the organ shapes are to allow users to understand how
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large the deviations for specific organs are in certain regions, as well as to highlight the
various regions where organs overlap. Furthermore, we are concerned with the necessary
encoding of the position variations inside an aggregated group of shapes, which indicate
the respective organ centers. This allows users to understand in which directions organ
tend to move during treatment. Both of these goals get more difficult the higher the
number of involved groups is and especially if one aims at comparing the different groups
to each other. Similar to the 3D case before, we need to employ some kind of comparative
visualization technique to handle the amount of information present. We, therefore,
look at three techniques with different methods for tackling the given problems: stacked
contour plots exploded views, and contour variability plots. These techniques are already
commonly employed in the analysis of weather forecast data and we explore their viability
in our usage scenario.

Stacked contour plots are probably the most simple variant, which simply uses superpo-
sitioning to place the organ shapes on top of each other [KCK17]. To avoid confusion
between elements of one group, like the median and confidence intervals, and the ones of
other groups, color coding could be employed. Exploded views, generally fall into the
category of juxtapositioning, where elements are displaced from their original position
and placed next to each other [LACS08]. For the use in our case, this could include
extruding specific groups or organs from their original position for a detailed analysis,
while the rest of the shown contours remains in place. Contour variability plots are
similar to boxplots in that they encode shape variations in the form of a confidence
interval with the median shape at its center, aggregating the compared elements, and
only showing their underlying statistical shape variation properties [WMK13, FBW16].

Our decision, to employ one of these methods is based on the following properties,
determining how well suited they are for our tasks. First and foremost, we want to
know the precision with which users determine the encoded shape variations between
median and confidence shapes. The method should allow the user to focus on either
understanding the shape variations and shape types for the whole patient or a single
organ type. During the analysis of one organ or group, the other shapes are supposed
to be preserved for contextual information. In some way, the overlaps between organs
should be visible. For each organ the information about the changes in their position also
needs to be included. Finally, we need to know which kind of interaction is necessary to
explore the data with a given approach. As before, the most important aspect of all of
these properties is their behavior if a larger number of elements is compared.

By simply stacking the contours of all organs and groups, such as in Figure 4.46, one
can determine the amount of variation by looking at the distance between the median
shapes. This gets more and more complicated the more contours are added and the more
overlaps are present. This is a general problem of the representation. The more elements
are compared the more visual clutter is present on the screen and the harder it gets
for users to understand individual elements. In this view, the focus of the comparison
largely depends on how the shapes are aligned. If they are aligned based on their original
position they support the analysis of interactions between different organs. If they are
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Figure 4.46: Example of an stacked contour plot for three individual patient groups, each
showing bladder, rectum, and prostate.

aligned to a common center on a per-organ basis, it supports the analysis of general
organ shape types. Generally, all contextual information regarding the relation to other
organs and the involved shape variations are always visible in this view. It is possible
to provide users with tools to hide certain contour lines to provide a more manageable
view. This also leads directly to the necessary interaction, which includes on top of the
visibility toggles functionalities like zooming, translation and changing the slice through
the volume. Rotation is not necessary as we are dealing with 2D views. Overlaps are
implicitly encoded as the regions between intersecting contour lines. The positions of
the organs themselves could be represented as dots, since they are already placed in the
same space.

Exploded views address the problem of the previous approach, where high numbers of
elements lead to too many contour intersections, which make the interpretation difficult.
With exploded views, parts of interest are manually extruded, as seen in Figure 4.47. This
can allow users to focus on a selected group or organ and inspect their shape variations
and types in detail. A problem of this method is that the contextual information provided
through surrounding structures is missing, e.g. in the case of an extruded organ, the
overlaps with the others are lost. One could, therefore, try to provide visual guides to
the initial position, like ghosted through views. To inspect desired organ shapes, one
needs a tool to select which group or organ should be extruded for a detailed analysis.
Apart from that, the standard interactions are necessary. The scalability of this approach
largely depends on the number of extruded elements, the more there are the less space
each individual element has. As we are dealing with medical data, we need to convey the
amount of distortion we introduce with this representation to the user.

In the aggregated contour box plot, visible in Figure 4.48, the concrete shape variations
are shown directly as colored regions, allowing for a more direct understanding of their
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Figure 4.47: Example of an exploded view for three individual patient groups, each
showing bladder, rectum and prostate. The bladder shapes are moved from their initial
position and shown next to each other. A ghosted version of them is left behind.

extent, compared to contour line plots [MWK14, WMK13]. This aggregation gives a
probabilistic view of the contained shape types. Assuming that this aggregation happens
on a per-organ basis, the overlaps between organs can be indirectly encoded as the
overlaps between the variability lobes. They can be highlighted by drawing the lobes
slightly transparent. Positional variations can also be aggregated as lobes in 3D space,
which stretch into the main variation directions. For this encoding, the same interaction
methods suffice as for the other methods. Regarding its scalability, the aggregation
process delivers always one lobe and one median independent of the number of aggregated
elements. This could also mean that certain details, like outliers or smaller shape groups,
are lost [WHLS18].

In the end, we decided to combine all three approaches. Firstly, we use the contour box
plot approach to encode the shape variations for a selected group in the cohort. Similar
to the 3D view, the basic color scheme of each group is also used to encode its shape
variability lobe and median. If more than one group is selected, we position the lobes on
top of each other and show mainly the median shape of each of them with their respective
variability lobes drawn transparently. This aims at allowing users to compare general
shape types. If desired the user can select one group, by simply clicking on its shape,
after which its lobe is drawn more opaquely to highlight the shape variability. It is also
drawn on top of all other stacked contours to provide an unobstructed view. The general
strategy follows a focus and context approach, where one shape is inspected in detail
and the remaining ones are still present in the background. This also affects the 3D
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Figure 4.48: Example of an aggregated contour plot showing bladder, rectum and prostate.
The individual shapes are aggregated into a shape median and a confidence interval.

view, where instead of showing all groups superimposed, only the currently selected one
is depicted with its shape variability color-coded on the surface. This process mainly
aims at allowing users to focus on exploring individual shape variations on a per-group
basis. Examples of the actual implementation are depicted in Figure 4.49. If the user
wants to explore these variations with a focus on a specific organ we provide the option
to extrude it. In this exploded view, shown in Figure 4.50, the same organ type in all
groups is taken and placed in such a way that it does not overlap with any other shape,
while at the same time being centered at a common point [BVG10]. This allows users to
compare the actual organ shapes to each other, without the influence of varying initial
positions. To preserve parts of the initial context a guidance line connects the center of
the extruded organ to its original position. The positions themselves and their variations
are explicitly encoded by drawing ellipsoidal glyphs that deform in the direction of the
highest positional variance, to indicate the main directions in which the organs move.
The user can manually select both the shown organs and the visual encodings, like glyphs
and contour variability plots, which can be seen in Figure 4.51.
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(a) Normal View (b) Selected Group

Figure 4.49: Screenshots of the 2D slice view. The shapes inside a group are drawn
using contour variability plots, while multiple groups are stacked on top of each other.
Selecting one group highlights their shape variations and hides the ones of the others.

(a) Normal View (b) Selected Group

Figure 4.50: Screenshots of the 2D slice view, where a certain organ shape is extruded for
an exploded view. All shapes of a certain type are moved away from the rest to prevent
overlaps and are aligned based on their center points. If a shape is selected, its shape
gets highlighted and a guidance line is drawn to its original position for context.

112



4.3. Shape Visualization

(a) Sagittal 2D View (b) Axial 2D View

Figure 4.51: Screenshots of the 2D slice view, with the added position change glyphs,
indicating the average movement of the organ centers. It is apparent that the organs
generally move mostly in the directions of the sagittal plane.
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CHAPTER 5
Implementation

All the aforementioned techniques need to to be implemented in a system that not
only performs all the necessary tasks, but also fulfills the requirements we defined
in Section 1.2.2 in regards to scalability, generalizability, and usability. These three
requirements turned out to be hard to combine. It was difficult to create a system,
which provides a responsive user interface and can handle large amounts of data. The
responsive user interface is needed for the quick exploration of the cohort.

5.1 General Structure

As we found out that not a single platform on its own was able to handle all requirements,
we decided to employ a four-component system. In the following, we want to discuss both
the general system structure and the contained components. Relating to the Chapter 4,
we will explain at which stage which parts got realized. Starting off with the highest
level, we had three main parts to implement: shape analysis, cohort visualization, and
shape visualization. The first one required the processing of large patient cohorts. The
latter two are more focused on presentation and quick analysis of the shape variations.
We decided to perform the shape analysis beforehand and visualize the resulting shape
space results in real-time.

The flow of the data through our system, whose structure is shown in Figure 5.1, is
as follows: Initially, the segmented data is transformed by MeVisLab into a format
processable by MATLAB, which then analyses the organ shapes, after which it provides
shape information on demand using a C# server. The server is able to supply our tool
implemented in a web application with the shape difference information and statistical
shapes.
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Browser

Figure 5.1: Overview of the general system structure, with the four main components.

5.2 MeVisLab

Collaboratively developed by MeVis Medical Solutions and Fraunhofer MEVIS, MeVis-
Lab 1 is a framework that allows users to build rapid prototypes of medical visualization
tools. In this regard, it offers a wide range of modules that can read, transform, and
visualize medical images.

For our purpose, we employ it as an offline pre-processing tool preparing the data for
our application. The organ segmentation data is organized in folders for patients and
timesteps, each of them containing a file format used specifically in radiation therapy
planning. Due to MATLAB not being able to process this kind of data, we used MeVisLab
to iterate over all organ line ensembles and transform them into volumetric image data as
described in Section 4.1.1. Due to recent updates in the tool a combination of MeVisLab
2.8 and 3.1 was necessary to perform this task. Only the former was able to read
the radiation therapy data, while only in the most recent version the functionality to
transform these segmentation lines into coverage masks was implemented. Therefore the
process starts with MeVisLab 2.8 reading the radiation therapy data and transforming
them into the commonly understood segmentation data format .cso, which is then
read and transformed by MeVisLab 3.1 into a volumetric coverage mask format. As all
contours across patients have vastly different names, we also need to provide a list of
labels. The list is used to determine the contour corresponding for each organ.

1https://www.mevislab.de
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5.3 MATLAB

The next part of the shape analysis process is performed using MATLAB. This tool
provides a wide variety of operations for the processing of matrix-based data, ranging
from simple vector calculations up to complex machine learning support. It is not as
efficient in its calculations as native C code, but its wide range of tools and their ease of
use allowed us to quickly develop and test different approaches.

Taking the volume coverage masks from MeVisLab, MATLAB performs the next steps
in the shape analysis process. The following procedure is rather memory intensive as
the shape analysis with PCA using the covariance matrix, requires the whole cohort
data to be present in the memory at once. To alleviate this burden we decided to split
the creation of the shape space and the reduction of the cohort elements and perform
it on a per-organ basis. Initially, the coverage masks are transformed into distance
volumes and aligned based on the registration procedure described in Section 4.1.3. The
organ volumes are then vectorized and arranged in a shared cohort matrix using the
sampling procedure from Section 4.1.4. Following this, the cohort matrix of the organ is
analyzed using PCA and its principal components are calculated. Hereby only that many
components are used to ensure the preservation of 99% of the overall shape variability.
With this knowledge, the shape volumes are reduced to a lower-dimensional space and
the procedure is repeated for the remaining organs. After each iteration, the working
memory is cleared to ensure that there is enough space for the next organ. While we
performed this analysis on the complete cohort, after the initial shape space calculation
the base matrix can be employed to reduce the organs of new patients and integrate
them into our system. The whole process takes around two to three hours to perform all
preprocessing steps and create the shape space with its elements. All of these operations
were performed on a laptop with an Intel i7 processor and 16 GB of working memory.
We save the information after the calculation and only load the data when the server is
started and it is needed for the following visualization steps.

MATLAB is not only used as an analysis tool for the organ shapes, but also is involved
in their visualization. Starting off with the cohort visualization, we employ MATLAB in
estimating several different characteristics that we highlight in our tabular view, many of
which are described in Section 4.2.1. Most prominently, we use MATLAB to estimate
the shape difference values for the different organs across the cohort. By calculating
the mean shape across a patient, the timesteps to be used for the calculation can be
specified, e.g. we mostly use the first five. The machine learning capabilities of MATLAB
are used to estimate similarly shaped clusters. For this it is possible to specify which
organs shall be considered for the clustering. While often the possible shapes of a single
organ are analyzed, users may also be interested to find similar patients. In any case,
the calculation process results in several matrices, which are made available to our C#
server using a COM interface. This interface is able to transmit information between an
external program, like the used server, and the MATLAB engine. It can be used to start
calculations and emit the results to external sources.
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(a) Unsorted (b) Sorted

Figure 5.2: Comparison of the unsorted and sorted upper and lower confidence interval
contours ( Median Contour Lower Confidence Contour Upper
Confidence Contour).

Another use of MATLAB in the visualization process is the creation of statistical shapes.
As mentioned in Section 4.3.1, the statistical analysis of the shape space can provide
organ shapes that correspond to the upper and lower confidence intervals or the median
of a group of shapes. As we use volumetric data as an input for the shape analysis, we
also receive volumes as output.

At this point, an important correction step is needed. Organs like the rectum with large
shape variations that wiggle through space can lead to the effect that the upper and
lower confidence shapes move in and out of each other. This is unwanted as the following
visualization procedures assume that the outer shape is a complete envelope of the lower
one. To achieve this property, we make use of the fact that the volumetric representation
with signed distance values to the surface of the object can be interpreted as a discretized
indirect surface and simply calculate the union and intersection surfaces. The union
surrounds the whole variability region, while the intersection surface represents the
innermost region to which the shape variability extends. This process was also described
in the work of Ferstl et al. [FKRW16]. Figure 5.2 shows how this process works on a
simple 2D contour example.

As discussed in Section 4.1.1, the resulting volumetric data format is difficult to visualize
and transmit from a server and we, therefore, extract a triangle mesh by using the
isosurface extraction function from MATLAB. To reduce the size of the mesh we encode
its vertices in the binary version of the .stl format. This format in its most basic
version is not able to save color information for the individual vertices. As this is required
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for the explicit variability encoding described in Section 4.3.3, we save this information
in an additional matrix to be read by the server.

5.4 C# Server
We decided that the user interface of our tool is best implemented using a web-based
application. This approach reduces the setup effort for possible users and makes it
available for a wider audience. To achieve this we need a web server that is both able
to host the website for the user interface as well as connect back to the MATLAB
COM-interface. Because of this, we chose to implement a C# Server, or more precisely
an ASP.NET core web application that is hosted on an IIS (Internet Information Server).
Similarly to PHP, this setup allows us to develop complex web applications. The server
not only provides and processes web pages but is also able to translate certain requests
to function calls. These functions are implemented in controllers. Our final server has
two of these controllers.

The first one is called ValueController and provides upon request several different
shape characteristics by connecting to the MATLAB engine. Most importantly, it returns
the shape difference values for a specified organ and center point. These two parameters
are provided on request in the URL. The parameters are then passed to MATLAB and
the function to estimate the difference values is called. After finishing the calculation,
the server reads back the result into its own memory and translates it into the JSON file
format to be passed back to the client. Similarly, the controller handles the clustering of
certain organ shapes, where one or several organs are grouped into a specified number
of clusters, whose individual ids are returned as a result. The server also provides
the toxicity information for the individual patients, which is not calculated but known
beforehand.

The second controller is the MeshController, which provides the client upon request
with different reconstructed 3D meshes and their related information. Most basically, it
returns the median, upper, and lower confidence interval shapes for a freely selectable
group of patients and timesteps. The elements that serve as a basis are specified in a 2D
array of patient and timestep information, which is provided as a parameter. Furthermore,
the server is also able to return the position at which the reconstructed organ shape is
centered, as well as the surface coloring required for the explicit encoding of the shape
variability on the mesh.

5.5 User Interface
Lastly, we discuss the main component, with which the user will interact, the web
interface. We aimed at providing the user with a simple website that provides the
necessary shape variability information, realized in the discussed visualization approaches.
These visualizations are implemented using JavaScript in combination with the libraries
D3.js and three.js.
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2D

Sagittal
2D

Axial

Figure 5.3: Illustration of the user interface structure.

The basic layout is shown in Figure 5.3 and defined through HTML. It includes the
following elements: Settings Panel, 2D Cohort Overview Visualization and four different
shape visualization windows, three of which are 2D slice viewers and one of which is a
3D view. One half of the screen is reserved for the settings and the cohort overview,
while the other half is used to visualize the local shape variations.

The settings region itself is split in half similar to the general layout, the left half is based
on Section 4.2.2. Here we provide the user with the possibility to sort, filter, and group
the data on demand. For these operations the users needs to select the properties based
on which the patients shall be arranged. The user can select which organ or property,
like toxicity, the elements should be sorted and grouped, as well as defining which of
the organs should be displayed in both the overview and the 2D and 3D views. The
settings also allow the user to define the timesteps from which the mean shape of each
patient is calculated. Following the "Details on Demand" approach we provide switches
to show or hide information like the distribution (Section 4.2.3), missing (Section 4.2.4),
and clusters (Section 4.2.1). The second half of the settings region concerns the shape
variability visualization in the 2D and 3D views. Hereby, the user can select whether
or not the median shapes, the variability lobes, and the position variation glyphs are
displayed. Moreover, we can select one of the organs displayed and extrude them in an
exploded view Section( 4.3.4).

5.5.1 D3.js

The JavaScript library D3.js 2 aims at supporting the development of dynamic visualiza-
tions in web applications using HTML, SVG, and CSS. Its general concept is based on the
idea of simply providing the data to be displayed and transforming it into various, visual
elements. It also offers a wide range of features and extensions, including the possibility
to animate changes in the data and the incorporation of colormaps from Colorbrewer

2https://d3js.org
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[HB03]. For our tool, we use the library to create an overview visualization of the whole
cohort explained in Section 4.2. After downloading the shape difference information
form the server, the data is displayed in a table with patients and timesteps. We first
transform the data into an object-based format where each element is identified by the
organ, patient, and timestep. This transformation allows us to process the data more
easily with D3.js and JavaScript.

Contrastingly to the general approach behind D3.js we do not provide the rendering
information directly to the library for visualization, but instead derive our own render
objects from the data. These objects are created for every visible element in the
cohort visualization and serve as an intermediate form before D3.js renders them. They
encapsulate all the information necessary to create the visual elements, e.g. the colored
rectangles for the tabular view. The render objects are created once after loading the
data from the server and are dynamically updated if the shape difference values are
recalculated or the groups change. D3.js is then provided with these objects and translates
them into the colored rectangles, labels, and other glyph elements that make up the
tabular overview visualization of the cohort. Most rendered objects, like the labels and
rectangles, can be clicked by the user to show the detailed shape variations.

To facilitate the understanding of the user when interpreting the cohort visualization,
a legend is provided. The color-coding is explained with two colorbars, i.e. one for the
shape differences and one for the inner group deviations. A simple glyph representing
the rectangle shape of the timesteps is shown where letters indicate which part of the
rectangle corresponds to which organ if multiple organs are encoded at once.

5.5.2 three.js

For the implementation of the aggregated contour plots another JavaScript library,
three.js 3 is used. Its basic functionality is to provide a simple wrapper for WebGL,
allowing us to render 3D objects in the browser. It provides a variety of utility functions,
for loading and transforming 3D meshes, but also provides built-in rendering options
for different surface materials. The shape visualization is split into four equally sized
windows, three 2D and one 3D window.

The 3D view is the simplest view of the four. It displays the median shape of the
selected elements. The shapes themselves are requested from the server, downloaded,
and displayed. A particularity of three.js is that the use of multiple views, four in our
case, also requires all elements to be replicated, so that each view has its own separate
resources. This leads to increased management requirements. Changes to the shapes, for
example, in the case of an exploded view, require a correct propagation of updates. To
achieve this, we created, similar to the 2D visualizations, a simple render object wrapper
where all global properties are stored. It has handles to the copied versions in each view,
to update them accordingly. Using the same selection as in the cohort overview, the user
can define which organs are visible.

3https://threejs.org
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(a) Upper Confidence Mask (b) Lower Confidence Mask (c) Combined Mask

Figure 5.4: Masks created by the stencil buffer, to render the confidence interval, median
and position glyph.

As described in Section 4.3.4, we use a slice-based 2D visualization that shows for a
selected organ part how large the shape variations are based on the median shape and
a plotted variability lobe. This kind of visualization was previously only created on
the basis of 2D streamline data, where the dimension of the data coincides with the
dimension of the visualization. However, as we receive 3D meshes, a transformation into
the respective 2D space had to be found. Based on the assumption that the organ shapes
involved are always watertight, i.e. they have no holes, we developed a simple approach
that can render 2D variability plots from 3D meshes. Starting with the confidence
interval, the goal is to render the region enclosed between the upper and lower confidence
shape, for a selected plane position. We first cut open the shapes by using the slice
plane as a clip plane. Afterward, we view the shapes parallel to the plane and start with
rendering the upper confidence shape into the stencil buffer. Hereby we define that back
faces increase the buffer and front faces decrease it. The idea behind this is to create a
mask for regions that are not to be colored for the lobe. Normally a closed mesh would
have as many front-facing as back facing parts at any pixel. Because we cut parts of the
mesh away, we expect more backfaces at the regions that represent the hole inside the
confidence lobe. While this masks out the outer part, we also need to mask out parts
inside the lobe. The process is therefore repeated for the lower confidence shape. In
this case, the backfaces decrease the buffer and the front faces increase it. For all these
calculations, the buffer must have wrapping enabled to prevent numerical caps at zero,
which would introduce errors into the result. After the calculation, we have the finished
lobe mask and can draw it to the screen, by rendering a screen aligned quad with the
correct color and transparency. The complete process with the involved masks can be
seen in Figure 5.4. By using blending, we can repeat this process for all drawn elements.
The median is drawn with the same procedure. Allowing the users to directly click on
the lobes in the 2D view, they can select them for closer inspection. To do this we render
the lobes into an ID buffer and find out the selected element by reading the pixel value at
the click position. Finally, to improve the overall performance of our tool, the 2D views
are only updated if the slice planes are changed or new elements are added. The final
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Figure 5.5: Overview of our complete application. One part of the cohort has been
selected in the overview visualization on the left and the respective shape variations are
shown in the anatomical shape visualization on the right.

complete user interface is shown in Figure 5.5, hereby all aforementioned visualizations
are present.
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CHAPTER 6
Results & Evaluation

In this chapter, we will look at the finished tool and analyze how it is able to perform
several different usage scenarios. These scenarios will be performed on single and multiple
patients and organs. We will evaluate how well the proposed tasks T1 and T2 are
fulfilled and if the asked research questions Q1-Q7 are answered. Together with two
domain experts, we looked at different usage scenarios. We recorded their feedback in an
informal evaluation, to receive an indication of the strengths and weaknesses as well as
possible future improvements of our approach.

6.1 Usage Scenarios
In these scenarios, we want to discuss possible use cases that can occur when analyzing
the shape variability of a single or multiple organs, both for the whole cohort in general
but also on a patient basis. We will present the ways our tool supports these cases and
also which findings were made.

6.1.1 Cohort Exploration

Initially, we start off with a bladder variability-based grouping. We see when looking
at Figure 6.1b that Group 2 contains the most elements, based on the size of the
corresponding histogram bar. This means that most bladders tend to have medium-sized
variations. If instead of comparing each shape to the mean of the first five treatment days,
we instead compare it to the first timestep only, we see in Figure 6.1a that the actual
bladder shapes are way more different, as the second cell in each row is considerably
darker than the first one. This is important because normally only the first timestep is
used for treatment planning. When the differences to the average shape of all timesteps
in Figure 6.1c is used, we see that the overall variability is at its lowest. One way of
interpreting this would be that by performing the planning based on the several timesteps
instead of only the first one could result in more precise models of the bladder shape.
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(a) Bladder shape variations when compared to timestep 1

(b) Bladder shape variations when compared to the average shape of
timesteps 1 - 5

(c) Bladder shape variations when compared to the average shape of
timesteps 1 - 13

Figure 6.1: Comparison of the shape differences (low high) between
groups of patients. For each patient the average shape estimated based on the respective
timesteps. The difference between the average shape of the patient and its remaining
timesteps is estimated and aggregated for the groups. It can be seen that the more
timesteps are considered for the average shape, the less the difference is to the remaining
ones, i.e. the more descriptive the average shape is for the individual patient.
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6.1.2 Single Organ Shape Exploration

Instead of looking only at the average shape differences in Figure 6.2a, we can also
explore the precise shape variations. For this, we select each of the three groups, for low,
medium, and high variations and look at their respective shape contour plots, as seen in
Figure 6.2b. Looking at Figure 6.2c, we see that in general, all groups have a similar
shape, shown by the relatively similar shapes of the medians. This can be due to the
fact that the variability of the bladder is not connected to the specific shape types. The
groups were created for patients with low, medium and high shape variations. We see
that the amount of variability defined by the group can also be seen in the 2D views.
For example, the group of low shape variability has small local shape variations shown
by the extent of the lobes. The positional variations also correspond to the respective
groups. The higher the general shape variability, the larger the positional variations are,
leading to larger ellipsoids, as seen in Figure 6.2b. The ellipsoids are also the largest
in the sagittal 2D view, indicating that most movement happens in this plane, which
corresponds to the finding of other works in this field [MSD03].

6.1.3 Multiple Organ Shape Exploration

The previous tasks can be repeated for any of the organs present in the data. To explore
the connections between organs, the user can select multiple organs to be displayed
simultaneously, like for example bladder, prostate, and rectum. A direct effect of this is
that the cohort overview encodes the average values of the three organs side-by-side, see
Figure 6.3a. We see that due to the sorting based on the amount of bladder shape change,
the bladder glyphs are arranged in a gradient from Group 1 to Group 3. Looking at the
rectum we see that the colors are roughly similar for each group. There seems to be little
to no correlation between the change in bladder and rectum shape, which does appear
logical due to the underlying biological functions of the two organs. The same holds true
for the inverse, if sorting is based on the rectum shape changes. More interestingly, we
see that the prostate does not undergo any large shape variations, as it has a near-white
color for all groups. This is plausible since prostate and CTV delineations are often used
as the target area for the radiation treatment. They are therefore not adapted in shape
usually and are only moved in position, even if their physical counterparts change.

To see at a glance, how descriptive these group values are, we look at the deviation and
missing value proportion in Figure 6.3b. The coloring shows that the values for the
bladders are rather similar in each group, the ones of the rectum are strongly varying,
and finally, the prostate seems to have similarly low values for all patients in the group.
An interpretation of the deviation values, encoded in the orange coloring, could go along
the following path: The grouped rectum values seem to vary largely in value, as they
have rather dark orange cells. This indicates that there is no correlation to the bladder
variations, based on which they are sorted. The black elements of the glyph also reveal
that around a third up to half of all patients are missing a segmented prostate, which can
also be directly seen if the associated patients are shown. By sorting the patients based
on the prostate, we see in Figure 6.4, that the first group containing all patients with
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(a) Cohort Visualization of the shape differences (low high)
with the selected groups

(b) Shape Visualization including position variation glyphs

Figure 6.2: Analysis of the local shape variabilities based on three groups (Median and
Lobe Color: Group 1, Group 2, Group 3) derived from the amount of
bladder shape variations.

128



6.1. Usage Scenarios

(c) Local Shape Variations - Created by selection

Figure 6.2: Analysis of the local shape variabilities based on three groups (Median and
Lobe Color: Group 1, Group 2, Group 3) derived from the amount of
bladder shape variations (continued).

(a) Shape Differences (low high)

(b) Group Disparity (low high) and missing values

Figure 6.3: Cohort visualization of groups with increasing bladder shape variability.
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Figure 6.4: Cohort visualization of groups with increasing prostate shape variability
(low high). The first group contains all patients with no segmented
prostate. For all groups the prostate shape variations are extremely small.

missing prostate, has around half of all patients, with its histogram bar being roughly the
size of all others combined. The interpretation of the deviation values, encoded in the
orange coloring of the first figure, could go along the following path: The grouped rectum
values seem to vary largely in value, as they have rather dark orange cells, indicating
that there is no correlation to the bladder variations. We can assume that although most
groups have missing shape values for the prostate, the patients with the shape are similar
in value and also have similarly low shape variations. Both of these facts are indicated
by the nearly white cells, shown in Figure 6.3b and Figure 6.4.

The next step would be to inspect the precise shape variations, to verify the made
assumptions. Similarly to before we can do this by selecting a single patient and aggregate
all its timesteps. Looking at the resulting contour variability plots in Figure 6.5, we see
what we came to expect. Apart from the usual bladder variations described before, the
prostate does not undergo any large shape changes during the treatment. This can be
seen both by the consistently bright coloring of the prostate in the 3D view, but also in
the small lobe around it in the 2D views. The rectum varies mostly above and below
the prostate, extending towards the bladder based on its filling. This is indicated by
the lobes further protruding from the median in these regions. We are also able to see
that there exist slight overlaps between the prostate shape and the bladder, shown in
the bright lobe color of regions where structures intersect. These may result from the
fact that the prostate shape not only includes its biological counterpart but also a safety
margin to ensure that all tumor cells are radiated. It is also notable that all organs seem
to undergo the same positional changes, indicated by the similarly shaped ellipsoids. The
prostate seems to move slightly less, as its ellipse is smaller than the others.

6.1.4 Shape Type Identification

Instead of looking at groups defined by properties like variation and toxicity, we can apply
machine learning to investigate possible bladder shape types. In the initial grouping based
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Figure 6.5: Shape Visualization of multiple organs for a single patient across time. The col-
oring in the 3D view encodes the amount of shape variation (low high).

on the bladder shape variations in Figure 6.6a we see high deviations in the calculated
bladder shape clusters. This is indicated by the dark orange cell colors. We can assume
that the groups are mostly composed of mixed shape types and that the clustering does
not reflect the amount of shape variation. Grouping the patients based on their most
prominent shape type leads to more homogeneous groups with less deviation. This is
visible in Figure 6.6b, where the cell colors are noticeably brighter than before. The first
three groups contain most patients while the fourth one contains two. Interestingly, the
third group as depicted in Figure 6.7 contains more than half of all patients with toxicity,
indicated by the bold labels of the patients. This information is obtained by expanding
the individual groups and inspecting the contained patients.

For a more detailed investigation, we select each group and inspect their median shapes,
confidence lobes, and positions. In Figure 6.8 we see that the shapes produced by the
clustering according to shape type appear more different than the ones produced by
splitting the shapes based on their average shape variation, as seen before in Figure 6.2b.
To better compare the bladder shapes, we can center them at a shared point and using
an exploded view. In doing so we see that Group 3 and 4 are slightly bigger. Group 3,
containing most patients with toxicity is rounder and protrudes further in the direction
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(a) Grouping based on bladder shape differences

(b) Grouping based on bladder shape types

Figure 6.6: Deviation (low high) of the aggregated timesteps for each
group
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Figure 6.7: Cohort visualization of bladder shapes with their individual shape types
( Group 1, Group 2, Group 3, Group 4), Group 3 has an increased
number of patients with toxicity.

of the prostate. This is not only visible in the 2D views, but also in the superpositioned
3D view. Both Group 1 and 2 have a flatter interface towards the prostate.

Performing a more in-depth analysis of the shape variations of each group, we see in
Figure 6.9 that all bladders tend to have the largest extent on the upper side. This makes
sense as here the bladder has the fewest constraints in the body and can freely extend.
At the opposite, the prostate is positioned. All bladder shapes have smaller lobes in this
region, indicating that the bladder does not extend far into it. This is also anatomically
plausible as growth in this direction is restricted due to the prostate and rectum.

The position variations in Figure 6.10 are also different for each group, although all of
the moves are predominantly in the sagittal plane. Its ellipsoids are larger than the ones
in the other planes. For Group 2 and 3, no dominant movement direction is visible and
the glyphs look like circles. The glyph of Group 3 is larger, indicating bigger movements
in the bladder position. Both Group 1 and 4 move more in one direction than in the
other one, leading to ellipsoidal glyphs. Recent works analyzing pelvic organ movement
in radiotherapy, like the one of Pinkawa et al. [PAG+06], verify these findings.

6.1.5 Individual Patient Analysis

Up to now, we have mainly focused on the exploration of the complete cohort. However,
we are also able to employ our tool on a per-patient basis. Still starting with a view of the
whole cohort, as seen in Figure 6.11a, we can see that some patients seem to have higher
deviation values than others. This indicates the presence of outliers, i.e. shapes that are
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(a) Original position

(b) Centered position using the exploded view

Figure 6.8: Comparison of bladder shapes with different alignment strategies.
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Figure 6.9: Local shape variations of the four different groups.

(a) Sagittal 2D View (b) Axial 2D View (c) Coronal 2D View

Figure 6.10: Position variations of the four different groups.
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largely different from the rest. Visually, this can be detected by dark orange table cells,
encoding high disparity values. Most patients tend to have more different shapes in the
first five timesteps than the last eight ones, shown by the generally darker orange coloring
of the first cells in the rows. Only Patient 17 stands out, whose second cell is noticeably
darker than the first one. If we focus on Patient 17, we see upon closer inspection of the
individual timesteps in Figure 6.11b, that Timestep 12 seems to be vastly different to
the rest. This is indicated by the dark blue coloring. The most probable reason for this
is the high disparity value for the patient.

We could either select all individual timesteps and plot them on top of each other, as seen
in Figure 6.12a, or we could examine the aggregated median shape and its confidence
interval by selecting the label of Patient 17 and the outlier, which is shown in Figure 6.12b.
By inspecting the resulting plot we can directly see that the outlier seems to stem from
the fact that the bladder is unusually small for the selected patient. This could be because
the bladder had a different filling than at the other timesteps, e.g. empty instead of full.
Upon further inspection, we see in Figure 6.13 that the bladder shape varies similarly to
the previously described patterns. Its variability lobes tend to be larger on top than in
the direction of the prostate. The axial 2D View also indicates that the bladder seems to
grow more with a tilt to the left, a pattern that can also be seen in the works of Casares
et al. [CMMH+17].

6.1.6 Toxicity Factor Analysis

To understand the effect of the bladder shape variations on toxicity, we can sort the
elements based on this attribute, as seen in Figure 6.14. The resulting groups are of
different sizes. More patients are in the group with no toxicity, which can be determined
by comparing the histogram bars beside the group labels. Looking at the remaining
elements in the group of patients with side-effects, we can detect several patterns. First
see that there are both patients with high (1, 10, and 18) and low (0, 1) shape changes.
The ones with low changes are identified by bright cells and the ones with high changes by
the darker cells. Secondly, we also find patients whose average shape of the first five days
is similar to the rest of the treatment (0, 1 and 14), but also those whose average shape
is not (10 and 18), leading to higher variations. For this, we compare the color of the first
cell in a row, representing the first treatment timesteps, with the second cell containing
the following treatment timesteps. These patterns do not indicate a connection between
bladder variability and induced toxicity, because they are also found across patients with
no symptoms.

By selecting the groups of patients with and without toxicity, we can look for structural
differences in the respective bladder shapes, which can be seen in Figure 6.15. In general,
there seem to be no large differences in the median shapes themselves, although the one
with toxicity seems to be slightly bigger. Both bladder and prostate shapes seem quite
similar. One noticeable difference can be found when inspecting the position variations.
While the bladder and rectum position variations look quite similar, the prostates with
and without toxicity look vastly different. Looking at the sagittal 2D View, we see that
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(a) Aggregated disparity visualization (low high)

(b) Individual shape differences (low high)

Figure 6.11: Outlier detection for individual patients.
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(a) Contours (b) Aggregated Shape with Outlier

(c) Median Shape (d) Outlier Shape

Figure 6.12: Bladder shape visualizations of an individual patient with a distinct outlier.

(a) Sagittal 2D View (b) Axial 2D View (c) Coronal 2D View

Figure 6.13: Local shape variations
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Figure 6.14: Bladder shape differences (low high) for patients with
and without toxicity.

the prostate with toxicity seems to move more horizontally than the one without, as it
extends much more from left to right. In this regard, the prostate from the group with
toxicity has a larger overlap with the rectum than the other, as the intersecting region of
the two shapes is bigger. A large overlap between the rectum and the treated region can
lead to serious side-effects. However, it should be noted that the results for the group
with toxicity are derived from only a small number of patients, and may, therefore, be
susceptible to outliers.

6.2 Evaluation

We discussed our tool with two experts in an informal evaluation. The participants knew
the data already from previous projects and are familiar with the exploration of patient
cohorts. Initially, we presented them the tool, explained the underlying functionality
and processes, and showed them the aforementioned usage scenarios. Throughout the
whole conversation, they were able to ask questions and make suggestions concerning
the interaction. Following this presentation, we asked them to comment on the shown
functionality and give their thoughts about the strengths and weaknesses of our work. In
the end, we also asked them for future improvements to our work and especially which
further functionalities they would consider as necessary.

The overall perception of our work was rather positive. One of the experts described it
as "a promising and useful decision-making tool for radiation oncologists". Most notably
the shape aggregation represents one of the more important features for them as it allows
for a flexible and systematic exploration of their data in a new way. "The tool offers a
way of identifying the setup uncertainty of the entire treatment", which they have not
been able to show precisely up to now. Although this use of our tool was not intentional,
it could provide interesting future research aspects. Generally, they considered the 2D
views to provide them with the most information. In the future they hope to be able
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Figure 6.15: Local shape and position variations for patients with and without
toxicity.

to explore their data into more detail, using our tool to search for new characteristics
inside their data. The gained information can lead to improvements during the treatment
planning, giving them "indications of patients that will fail or that may develop toxicity
at the beginning of the treatment". One way they imagined this could be achieved would
be the derivation of thresholds for shape variations and postponing the treatment if the
shape is too different from the initial one. Other future extensions they would consider
helpful, include the addition of a probing tool along the median to show the extent of
the variations in mm. A more in-depth evaluation of the capabilities should also be done
according to the experts, where the results of our system are compared to other work
like the Bladder Runner [RCMA+18].
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CHAPTER 7
Conclusions & Future Work

This chapter concludes the presented work and will mainly touch upon two topics:
Firstly we will discuss how well we were able to answer the initial research questions and
proposed tasks, after which we will look at possible areas of improvement that can build
the foundation of future work.

7.1 Summary
The cornerstone of our work is summarized by a simple question: How can we analyze
and visualize the anatomical changes of organs to support medical experts in their research
and treatment planning? We split that question into seven individual parts that we all
aimed at answering, as discussed in Section 1.2. They served as a basis for the analysis of
related works in Chapter 3, where we analyzed recent scientific advances and concluded
that none of them can satisfy all proposed question parts. In this section, we will go
through each question and discuss how well our proposed solution performs and how it
compares to previous works.

(Q1) Which patients or organs experience high amounts of variability inside the cohort?
The first three questions directly deal with the analysis on a global level, where the whole
cohort should be analyzed. Several works estimated the amount of shape difference. Many
of them did this for various non-medical datasets [BBS+18, SPA+14] or only analyzed a
single organ [RCMA+18]. In this work, we estimate the amount of shape variation on a
per-patient basis, by measuring the distance of the shape at each timestep to a defined
center and visualize the scalar results in a tabular view. This allows users to identify the
general amount of shape variation and outliers, where the shape looks largely different.

(Q2) What are common types of shapes and variations inside the cohort? Other works
like the one of Reiter et al. [RBGR18] or Raidou et al. [RCMA+18]. The former work
relied on shape descriptors, which are not suitable for our case, as they suffer from shape
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specific weaknesses. Additionally, they are not able to synthesize intermediate shapes.
The latter work by Raidou et al. [RCMA+18] only focused on one organ, the bladder.
By clustering organs inside their respective shape spaces, we are able to assign similar
shapes to the same group, for multiple different organs. Visualizing the assigned groups
in combination with sorting and grouping of similar patients allows users to inspect
prominent shape types.

(Q3) Which parts of the cohort are missing? As not all patients have all the organs
segmented, users need to put the quality of the aggregated shape values into context.
This problem is rarely tackled in other works. Blumenschein et al. [BBS+18] showed
how this information can be provided for the analysis of non-medical datasets, which
does not directly translate to our usage scenarios. Our work provides the possibility
to highlight how many elements inside an aggregated group are missing, using a glyph-
overlay. Previous encodings were often too hard to interpret and therefore we designed a
representation that offers a more precise estimation of the proportion of missing data.

The next four research questions mainly focus on the detailed inspection of organ
shapes, two of which can be answered together. (Q4) How do organs vary in shape and
position between patients or across treatment instances? and (Q5) Do certain parts of
an organ experience especially high variations? We start with the most basic search for
general shape variations, they are shown by statistically analyzing the shape space and
rendering a shape variability plot. This process was derived from the work of Ferstl
et al. [FBW16, FKRW16]. Previous works analyzed position variations [CGL+10]. We
presented, to the best of our knowledge, the first tool that integrates position variation
information visually. We extended existing approaches for statistical shape analysis to
work for pelvic organs and not only streamline data and introduced a method to derive
shape variability plots from 3D meshes instead of 2D regions. The presented shape
variability plot is not only able to aggregate shapes and positions of multiple patients,
but also highlights specifically which parts undergo large changes. As for the position
variations our use of ellipsoidal glyphs is able to show how much the centers of the
individual organs vary.

(Q6) Are there overlaps between different organs inside the cohort? Similarly to the
missing data visualization, this problem is not often approached in recent works. Tory
et al. [TMA01] provided a tool closely related to our use case. Their analysis mainly
focused on the aggregation of lesions, but their approach struggles the more elements are
added, which does not concern us due to our statistical analysis. The amount of overlap
between different organs of the same patient or the same organ of different patients or
groups is encoded implicitly in our work. Whether the median shapes intersect or the
semi-transparent variability lobes do, it can be assumed that the involved structures
intersect each other.

(Q7) How do certain organs differ in shape between patients? Most other works either
analyzed only one kind of shape [FBW16, RCMA+18] or only one way to analyze groups
of shapes [RBGR18, BBP10]. Our method offers users the choice to either aggregate
or superposition shape variability plots. This allows users to directly compare different
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groups in a shared space without cluttering the view with too much information. We
also provide the option to view an organ either in context with all other shapes, or to
extrude all organs of a kind and view them aligned to each other in an exploded view.

We presented a visual analysis application for the exploration of segmented pelvic organs
in multiple patients, across the whole radiation therapy treatment procedure. In this
work, we focused on the global exploration and analysis of pelvic organ shape variability
in an abstracted tabular view and on the local exploration and analysis in a combined
2D/3D anatomical view. We showcased the functionality of our tool in different usage
scenarios and detailed how it is able to answer the previously proposed research questions,
these results were also verified in a small evaluation conducted with two domain experts.

7.2 Limitations & Future Work
Looking at the presented results and the evaluation already gives a good impression
of the capabilities of our proposed tool. For a comprehensive analysis, we also need to
discuss where the limits of our work lie. Understanding them allows us to put the work
into context with other solutions from the field and can also serve as an inspirational
basis for future improvements and continued work.

Scalability was one of our three primary requirements that needed to be fulfilled for our
final tool. We aimed to support the fast exploration of large cohorts of organ shape data
from multiple patients and timesteps, while simultaneously allowing for easy addition
of new patients and interactive exploration. In the end, we were only able to partially
achieve this requirement. Although we were able to create a visualization that can analyze
and aggregate groups of patients and organs, we are still facing two big challenges: First,
the complex data format requires preprocessing and manual assignment of the shapes to
be extracted. The possibility to add new patients to the dataset exists. However, this
takes several minutes of computation and a separate tool is needed, before the data could
be integrated into the main application. Secondly, the general performance of our tool
during the exploration has some room for improvement. Namely, the time between the
selection of a shape in the overview visualization and the display of its detailed shape
variability plots needs to be reduced. Figure 7.1 depicts the necessary loading time. As
can be seen from this plot the most time is consumed by the download of the 3D meshes
from the server. This is since JavaScript works primarily single-threaded and is only
able to process downloads sequentially. We implemented several improvements, like the
interleaving of download requests to start as soon as the last one finishes, or the use
of the .stl format, which has a memory-saving binary representation. To ensure an
interactive exploration more improvements are necessary. One possible option could be
to use web workers, to perform the resource loading in parallel in the background, which
would require more complex resource management. A similar implementation already
exists in THREE.js for .obj files.

Concerning the required usability, there is also room for improvements, which should
be implemented mainly by closer cooperation with future users in the field of medicine.
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Figure 7.1: Aggregation, Download, Processing Loading time for a shape
variability plot of a bladder for an aggregated group of patients. The total time is split
into the activities: shape aggregation and statistical analysis on the server, download
from the server to the client, and client-side processing to create the displayed mesh.

Hereby, we look at two possible groups with different needs: researchers conducting
cohort studies and doctors performing treatment planning.

For the former group, an apparent limitation that needs future improvements is the
currently rather restricted way of selecting and grouping elements, both in the cohort view
and the shape variability plot. Currently, patients are grouped, based on their average
shape differences, into groups of low, middle and high values. Further improvements
to this process could include allowing the user to manually add and remove patients
from groups, for example, using drag-and-drop to provide more flexibility in the analysis.
Another area where more flexibility could be needed is the selection of elements that are
aggregated into a shape variability plot. For now, users can only select the whole patient
or group, timesteps 1-5, 6-13, or single timesteps. Future versions should allow users to
more precisely select the elements they are interested in aggregating, without the current
restrictions.

The latter group of doctors, who perform treatment planning for individual patients,
might benefit more from a simplified tool that focuses more on describing the organ shape
variations of individual patients. Hereby, additional guidance functionality could benefit
users in their work, like the automated suggestion of patients with similar organ shapes
to provide background knowledge about common shape variations during the planning
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process [CGM+16].

Before the use of our tool in medical practice a complete evaluation of the chosen
registration method is necessary. Our results have shown that our visualization is
susceptible to changes in the alignment of the analyzed organ shapes. We, therefore,
developed a registration method based on the information from previous works and the
results visible in the original data. This approach is able to return the expected results
for organs like the bladder and rectum. However, we still see small variations in the
prostate, where we were not expecting them [CMMH+17]. Future work should focus on
understanding these variations and their sources, to allow researchers to safely use the
application in medical research.

During the analysis of our results, we often detected large differences in the position
variations of organs. While we are currently encoding this information in the detailed view
of the organ shapes, we are not providing this information in the overview visualization.
Their inclusion should be focused in future extensions, as this information may provide
further clues to the underlying organ movements in different patients and possible ties to
treatment side-effects. Another measure that should be included in future extensions
is the amount of overlap between organs. Similarly to the position variations, this is
currently only visible in the detailed views. Taking a look at the work of Weissenbck et
al. [WFG+19], we could use a similar comparison approach between the shape volumes
of two organs to detect overlapping regions. Our overall goal should be to provide a
close connection between the cohort visualization and the detailed shape visualizations,
to allow for a quick exploration, while at the same time maintaining an overview of all
important factors.

Finally, a rework of the current shape type classification approach may be necessary. The
created shape space can model the local shape variations rather well and is also able to
detect noticeable shape differences in individual patients. It is hard to tell if it is able to
properly differentiate organs based on their general shape type and to what extent it is
influenced by the volume and position of the organs. To understand the created organ
shape spaces better, future works should analyze the effects of its principal components,
i.e. what parts of the shape are influenced by them. Another possible option could be to
use a descriptor-based approach for the shape type grouping and perform the detailed
shape analysis with our presented methods. These approaches may be less influenced by
the respective organ volumes. Nonetheless, they may struggle with varying shapes, e.g.
the elongated rectum [RCMA+18, RBGR18]. Future works should, therefore, analyze
what the optimal way would be to provide a good shape type grouping for a cohort of
shapes.

All these future extension options show that there is still a long way to go, but the
tool presented in this work can be seen as another stepping stone in the integration of
visual analytics in the investigation of medical data. In this work we presented one of
the first tools analyzing shape variability in patient cohorts for multiple organs. It is
aimed at aiding clinical researchers working on the development of robust treatment
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planning strategies, and demonstrates the necessity of including organ shape variability
into radiotherapy treatments.
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